diff --git a/gnu/local.mk b/gnu/local.mk index cf1d733433b..149ef8dff9a 100644 --- a/gnu/local.mk +++ b/gnu/local.mk @@ -2223,7 +2223,6 @@ dist_patch_DATA = \ %D%/packages/patches/rw-igraph-0.10.patch \ %D%/packages/patches/rxvt-unicode-fix-cursor-position.patch \ %D%/packages/patches/s7-flint-3.patch \ - %D%/packages/patches/sage-update-pari-gp.patch \ %D%/packages/patches/sajson-for-gemmi-numbers-as-strings.patch \ %D%/packages/patches/sajson-build-with-gcc10.patch \ %D%/packages/patches/sbc-fix-build-non-x86.patch \ diff --git a/gnu/packages/patches/sage-update-pari-gp.patch b/gnu/packages/patches/sage-update-pari-gp.patch deleted file mode 100644 index 741b9b14786..00000000000 --- a/gnu/packages/patches/sage-update-pari-gp.patch +++ /dev/null @@ -1,5020 +0,0 @@ -diff --git a/build/pkgs/cypari/checksums.ini b/build/pkgs/cypari/checksums.ini -index 1ead9490d1a..3794d83334f 100644 ---- a/build/pkgs/cypari/checksums.ini -+++ b/build/pkgs/cypari/checksums.ini -@@ -1,4 +1,4 @@ - tarball=cypari2-VERSION.tar.gz --sha1=4e9f14d218bc1cea29e03a2ceec9bf3dfbfd5eb3 --sha256=817606bf661b71d33e1d012421907a4f8fb09dd81b7d3e3ae179b3978020bbf1 -+sha1=556d1a16818663ba6e6a3c9d2b14cc907a7eef4c -+sha256=aaa017a6a280581902f73cf5ce1695712b6598a032be14cfab81f97c475f83b8 - upstream_url=https://files.pythonhosted.org/packages/source/c/cypari2/cypari2-VERSION.tar.gz -diff --git a/build/pkgs/cypari/package-version.txt b/build/pkgs/cypari/package-version.txt -index ccbccc3dc62..c043eea7767 100644 ---- a/build/pkgs/cypari/package-version.txt -+++ b/build/pkgs/cypari/package-version.txt -@@ -1 +1 @@ --2.2.0 -+2.2.1 -diff --git a/build/pkgs/cysignals/checksums.ini b/build/pkgs/cysignals/checksums.ini -index 8ba1030ffdf..9c6648af170 100644 ---- a/build/pkgs/cysignals/checksums.ini -+++ b/build/pkgs/cysignals/checksums.ini -@@ -1,4 +1,4 @@ - tarball=cysignals-VERSION.tar.gz --sha1=76db7aa59d55e867c83b329c017382555253af43 --sha256=0f1e321e55a07f901c86a36a1e4497f6ff9dfe700681d0130a38c36e4eb238c3 -+sha1=e285e209a3a5f9469cb5ade746c518cd3a600a9b -+sha256=89f7626dbf29db5ab3d6eff15a89978f4eb5193c320e9099bcc157dacdefd1eb - upstream_url=https://files.pythonhosted.org/packages/source/c/cysignals/cysignals-VERSION.tar.gz -diff --git a/build/pkgs/cysignals/dependencies b/build/pkgs/cysignals/dependencies -index cd45ae2076c..d42690aa7b1 100644 ---- a/build/pkgs/cysignals/dependencies -+++ b/build/pkgs/cysignals/dependencies -@@ -1,4 +1,4 @@ -- cython pari | $(PYTHON_TOOLCHAIN) $(PYTHON) -+ cython | $(PYTHON_TOOLCHAIN) meson_python $(PYTHON) - - ---------- - All lines of this file are ignored except the first. -diff --git a/build/pkgs/cysignals/package-version.txt b/build/pkgs/cysignals/package-version.txt -index 3d0e62313ce..81f363239f5 100644 ---- a/build/pkgs/cysignals/package-version.txt -+++ b/build/pkgs/cysignals/package-version.txt -@@ -1 +1 @@ --1.11.4 -+1.12.3 -diff --git a/build/pkgs/cysignals/spkg-install.in b/build/pkgs/cysignals/spkg-install.in -index 0894611a27e..2e2a9691837 100644 ---- a/build/pkgs/cysignals/spkg-install.in -+++ b/build/pkgs/cysignals/spkg-install.in -@@ -3,9 +3,4 @@ cd src - # #29473: Override -Wp,-D_FORTIFY_SOURCE from Fedora's python3. - export CPPFLAGS="$CPPFLAGS -Wp,-U_FORTIFY_SOURCE" - --if [ "$SAGE_DEBUG" = yes ]; then -- CYSIGNALS_CONFIGURE="--enable-debug $CYSIGNALS_CONFIGURE" --fi -- --sdh_configure $CYSIGNALS_CONFIGURE - sdh_pip_install . -diff --git a/build/pkgs/pari/checksums.ini b/build/pkgs/pari/checksums.ini -index d56c437a2ee..cfb35617995 100644 ---- a/build/pkgs/pari/checksums.ini -+++ b/build/pkgs/pari/checksums.ini -@@ -1,4 +1,4 @@ - tarball=pari-VERSION.tar.gz --sha1=377593dfe72df13578ea0a517fcb0f81cc9758d4 --sha256=0efdda7515d9d954f63324c34b34c560e60f73a81c3924a71260a2cc91d5f981 --upstream_url=https://pari.math.u-bordeaux.fr/pub/pari/OLD/${VERSION_MAJOR}.${VERSION_MINOR}/pari-VERSION.tar.gz -+sha1=f5f5656a68947ef6a4841d40dd09a72fe96762a5 -+sha256=67ba6f3071233725258541e4f174b5efbc64c65ae5115bade9edfc45f1fde5dc -+upstream_url=https://pari.math.u-bordeaux.fr/pub/pari/unix/pari-VERSION.tar.gz -diff --git a/build/pkgs/pari/package-version.txt b/build/pkgs/pari/package-version.txt -index 7a561821071..3f8eb714d02 100644 ---- a/build/pkgs/pari/package-version.txt -+++ b/build/pkgs/pari/package-version.txt -@@ -1 +1 @@ --2.15.5 -+2.17.1 -diff --git a/build/pkgs/pari/spkg-configure.m4 b/build/pkgs/pari/spkg-configure.m4 -index 207487119a6..d9d90e0d421 100644 ---- a/build/pkgs/pari/spkg-configure.m4 -+++ b/build/pkgs/pari/spkg-configure.m4 -@@ -1,8 +1,7 @@ - SAGE_SPKG_CONFIGURE([pari], [ - dnl See gp_version below on how the version is computed from MAJV.MINV.PATCHV -- m4_pushdef([SAGE_PARI_MINVER],["134916"])dnl this version and higher allowed -- dnl Do not allow Pari 2.17 or later, see #38769: -- m4_pushdef([SAGE_PARI_MAXVER],["135424"])dnl this version and higher not allowed -+ m4_pushdef([SAGE_PARI_MINVER],["135245"])dnl this version and higher allowed -+ m4_pushdef([SAGE_PARI_MAXVER],["999999"])dnl this version and higher not allowed - SAGE_SPKG_DEPCHECK([gmp readline], [ - AC_PATH_PROG([GP], [gp]) - if test x$GP = x; then dnl GP test -diff --git a/environment-3.11-linux-aarch64.yml b/environment-3.11-linux-aarch64.yml -index c17c3395c99..a26cafa98db 100644 ---- a/environment-3.11-linux-aarch64.yml -+++ b/environment-3.11-linux-aarch64.yml -@@ -1,7 +1,7 @@ - name: sage-dev - # Generated by conda-lock. - # platform: linux-aarch64 --# input_hash: 09e3b72a7aa5c065370cb8a339e14ed42ad43f0c89abc55b38713be2d4560fd9 -+# input_hash: 8682c27c6bd8b3e849271dd9881b907b660025227d849b37e5c7098a5a6a84ab - - channels: - - conda-forge -@@ -9,12 +9,12 @@ dependencies: - - _openmp_mutex=4.5=2_kmp_llvm - - alabaster=1.0.0=pyhd8ed1ab_1 - - alsa-lib=1.2.13=h86ecc28_0 -- - arpack=3.9.1=nompi_hd363cd0_101 -+ - arpack=3.9.1=nompi_h6fc4d3a_102 - - asttokens=3.0.0=pyhd8ed1ab_1 - - autoconf=2.71=pl5321h2148fe1_1 - - automake=1.17=pl5321h8af1aa0_0 - - babel=2.16.0=pyhd8ed1ab_1 -- - bdw-gc=8.0.6=hd62202e_0 -+ - bdw-gc=8.2.8=h5ad3122_1 - - beautifulsoup4=4.12.3=pyha770c72_1 - - binutils=2.43=hf1166c9_2 - - binutils_impl_linux-aarch64=2.43=h4c662bb_2 -@@ -28,33 +28,33 @@ dependencies: - - brotli-python=1.1.0=py311h89d996e_2 - - bzip2=1.0.8=h68df207_7 - - c-ares=1.34.4=h86ecc28_0 -- - c-compiler=1.8.0=h6561dab_1 -+ - c-compiler=1.9.0=h6561dab_0 - - ca-certificates=2024.12.14=hcefe29a_0 - - cairo=1.18.2=h83712da_1 - - cddlib=1!0.94m=h719063d_0 - - certifi=2024.12.14=pyhd8ed1ab_0 - - cffi=1.17.1=py311h14e8bb7_0 -- - charset-normalizer=3.4.0=pyhd8ed1ab_1 -+ - charset-normalizer=3.4.1=pyhd8ed1ab_0 - - cliquer=1.22=h31becfc_1 - - colorama=0.4.6=pyhd8ed1ab_1 - - comm=0.2.2=pyhd8ed1ab_1 - - contourpy=1.3.1=py311hc07b1fb_0 - - conway-polynomials=0.10=pyhd8ed1ab_0 -- - coverage=7.6.9=py311ha09ea12_0 -+ - coverage=7.6.10=py311ha09ea12_0 - - cpython=3.11.11=py311hd8ed1ab_1 -- - cxx-compiler=1.8.0=heb6c788_1 -+ - cxx-compiler=1.9.0=heb6c788_0 - - cycler=0.12.1=pyhd8ed1ab_1 -- - cypari2=2.1.5=py311h5ab95f0_0 -+ - cypari2=2.2.1=py311hc8fbf20_0 - - cyrus-sasl=2.1.27=hf6b2984_7 -- - cysignals=1.11.2=py311h644d908_3 -+ - cysignals=1.12.3=py311h89d996e_0 - - cython=3.0.11=py311hac78f04_3 - - dbus=1.13.6=h12b9eeb_3 -- - debugpy=1.8.11=py311h89d996e_0 -+ - debugpy=1.8.12=py311h89d996e_0 - - decorator=5.1.1=pyhd8ed1ab_1 - - docutils=0.21.2=pyhd8ed1ab_1 - - double-conversion=3.3.0=h2f0025b_0 - - ecl=24.5.10=h5567cc5_0 -- - eclib=20231212=h154513d_1 -+ - eclib=20231212=h4705ef2_2 - - ecm=7.0.5=ha2d0fc4_0 - - exceptiongroup=1.2.2=pyhd8ed1ab_1 - - execnet=2.1.1=pyhd8ed1ab_1 -@@ -68,14 +68,14 @@ dependencies: - - fontconfig=2.15.0=h8dda3cd_1 - - fonts-conda-ecosystem=1=0 - - fonts-conda-forge=1=0 -- - fonttools=4.55.3=py311h58d527c_0 -- - fortran-compiler=1.8.0=h25a59a9_1 -- - fplll=5.4.5=hb3a790e_0 -- - fpylll=0.6.1=py311h5d3d69a_0 -+ - fonttools=4.55.6=py311h58d527c_0 -+ - fortran-compiler=1.9.0=h25a59a9_0 -+ - fplll=5.5.0=h45c7457_0 -+ - fpylll=0.6.2=py311h2dc1a0e_0 - - freetype=2.12.1=hf0a5ef3_2 -- - furo=2024.8.6=pyhd8ed1ab_1 -- - gap-core=4.14.0=h1754e88_1 -- - gap-defaults=4.14.0=h8af1aa0_1 -+ - furo=2024.8.6=pyhd8ed1ab_2 -+ - gap-core=4.14.0=h1754e88_2 -+ - gap-defaults=4.14.0=h8af1aa0_2 - - gcc=13.3.0=h8a56e6e_1 - - gcc_impl_linux-aarch64=13.3.0=hcdea9b6_1 - - gcc_linux-aarch64=13.3.0=h1cd514b_7 -@@ -84,7 +84,7 @@ dependencies: - - gfortran=13.3.0=h8a56e6e_1 - - gfortran_impl_linux-aarch64=13.3.0=h174a3c4_1 - - gfortran_linux-aarch64=13.3.0=h2809cf8_7 -- - giac=1.9.0.21=h04922a4_1 -+ - giac=1.9.0.21=h6e4ddb9_2 - - givaro=4.2.0=h364d21b_0 - - glpk=5.0=h66325d0_0 - - gmp=6.3.0=h0a1ffab_2 -@@ -95,21 +95,21 @@ dependencies: - - gxx_impl_linux-aarch64=13.3.0=h1211b58_1 - - gxx_linux-aarch64=13.3.0=h2864abd_7 - - h2=4.1.0=pyhd8ed1ab_1 -- - harfbuzz=9.0.0=hbf49d6b_1 -- - hpack=4.0.0=pyhd8ed1ab_1 -- - hyperframe=6.0.1=pyhd8ed1ab_1 -+ - harfbuzz=10.2.0=h785c1aa_0 -+ - hpack=4.1.0=pyhd8ed1ab_0 -+ - hyperframe=6.1.0=pyhd8ed1ab_0 - - icu=75.1=hf9b3779_0 - - idna=3.10=pyhd8ed1ab_1 - - igraph=0.10.15=h207f3e5_1 - - imagesize=1.4.1=pyhd8ed1ab_0 - - iml=1.0.5=h15043fe_1004 -- - importlib-metadata=8.5.0=pyha770c72_1 -+ - importlib-metadata=8.6.1=pyha770c72_0 - - iniconfig=2.0.0=pyhd8ed1ab_1 - - ipykernel=6.29.5=pyh3099207_0 -- - ipython=8.30.0=pyh707e725_0 -+ - ipython=8.31.0=pyh707e725_0 - - ipywidgets=8.1.5=pyhd8ed1ab_1 - - jedi=0.19.2=pyhd8ed1ab_1 -- - jinja2=3.1.4=pyhd8ed1ab_1 -+ - jinja2=3.1.5=pyhd8ed1ab_0 - - jupyter_client=8.6.3=pyhd8ed1ab_1 - - jupyter_core=5.7.2=pyh31011fe_1 - - jupyterlab_widgets=3.0.13=pyhd8ed1ab_1 -@@ -117,7 +117,7 @@ dependencies: - - keyutils=1.6.1=h4e544f5_0 - - kiwisolver=1.4.7=py311h75754e6_0 - - krb5=1.21.3=h50a48e9_0 -- - lcalc=2.0.5=he588f68_2 -+ - lcalc=2.0.5=h30a6b3d_3 - - lcms2=2.16=h922389a_0 - - ld_impl_linux-aarch64=2.43=h80caac9_2 - - lerc=4.0.0=h4de3ea5_0 -@@ -131,27 +131,27 @@ dependencies: - - libbrotlidec=1.1.0=h86ecc28_2 - - libbrotlienc=1.1.0=h86ecc28_2 - - libcblas=3.9.0=26_linuxaarch64_openblas -- - libclang-cpp19.1=19.1.6=default_he324ac1_0 -- - libclang13=19.1.6=default_h4390ef5_0 -+ - libclang-cpp19.1=19.1.7=default_he324ac1_0 -+ - libclang13=19.1.7=default_h4390ef5_0 - - libcups=2.3.3=h405e4a8_4 - - libcurl=8.11.1=h6702fde_0 - - libdeflate=1.23=h5e3c512_0 - - libdrm=2.4.124=h86ecc28_0 -- - libedit=3.1.20191231=he28a2e2_2 -+ - libedit=3.1.20240808=pl5321h976ea20_0 - - libegl=1.7.0=hd24410f_2 - - libev=4.33=h31becfc_2 - - libexpat=2.6.4=h5ad3122_0 - - libffi=3.4.2=h3557bc0_5 -- - libflint=3.1.2=h0433c20_101 -+ - libflint=3.1.3.1=hf9b8075_101 - - libgcc=14.2.0=he277a41_1 - - libgcc-devel_linux-aarch64=13.3.0=h0c07274_101 - - libgcc-ng=14.2.0=he9431aa_1 -- - libgd=2.3.3=h6818b27_10 -+ - libgd=2.3.3=hc8d7b1d_11 - - libgfortran=14.2.0=he9431aa_1 - - libgfortran-ng=14.2.0=he9431aa_1 - - libgfortran5=14.2.0=hb6113d0_1 - - libgl=1.7.0=hd24410f_2 -- - libglib=2.82.2=hc486b8e_0 -+ - libglib=2.82.2=hc486b8e_1 - - libglvnd=1.7.0=hd24410f_2 - - libglx=1.7.0=hd24410f_2 - - libgomp=14.2.0=he277a41_1 -@@ -160,7 +160,7 @@ dependencies: - - libjpeg-turbo=3.0.0=h31becfc_1 - - liblapack=3.9.0=26_linuxaarch64_openblas - - liblapacke=3.9.0=26_linuxaarch64_openblas -- - libllvm19=19.1.6=h2edbd07_0 -+ - libllvm19=19.1.7=h2edbd07_0 - - liblzma=5.6.3=h86ecc28_1 - - liblzma-devel=5.6.3=h86ecc28_1 - - libnghttp2=1.64.0=hc8609a4_0 -@@ -169,18 +169,18 @@ dependencies: - - libopenblas=0.3.28=pthreads_h9d3fd7e_1 - - libopengl=1.7.0=hd24410f_2 - - libpciaccess=0.18=h31becfc_0 -- - libpng=1.6.44=hc4a20ef_0 -+ - libpng=1.6.45=hec79eb8_0 - - libpq=17.2=hd56632b_1 - - libsanitizer=13.3.0=ha58e236_1 - - libsodium=1.0.20=h68df207_0 -- - libsqlite=3.47.2=h5eb1b54_0 -+ - libsqlite=3.48.0=h5eb1b54_1 - - libssh2=1.11.1=ha41c0db_0 - - libstdcxx=14.2.0=h3f4de04_1 - - libstdcxx-devel_linux-aarch64=13.3.0=h0c07274_101 - - libstdcxx-ng=14.2.0=hf1166c9_1 - - libtiff=4.7.0=h88f7998_3 - - libuuid=2.38.1=hb4cce97_0 -- - libwebp-base=1.4.0=h31becfc_0 -+ - libwebp-base=1.5.0=h0886dbf_0 - - libxcb=1.17.0=h262b8f6_0 - - libxcrypt=4.4.36=h31becfc_1 - - libxkbcommon=1.7.0=h46f2afe_1 -@@ -188,7 +188,7 @@ dependencies: - - libxslt=1.1.39=h1cc9640_0 - - libzlib=1.3.1=h86ecc28_2 - - linbox=1.7.0=hf74d613_1 -- - llvm-openmp=19.1.6=h013ceaa_0 -+ - llvm-openmp=19.1.7=h013ceaa_0 - - lrcalc=2.1=h5ad3122_7 - - m4=1.4.18=h516909a_1001 - - m4ri=20140914=hedfd65a_1006 -@@ -206,22 +206,22 @@ dependencies: - - mpfr=4.2.1=h2305555_3 - - mpmath=1.3.0=pyhd8ed1ab_1 - - munkres=1.1.4=pyh9f0ad1d_0 -- - mysql-common=9.0.1=h3f5c77f_3 -- - mysql-libs=9.0.1=h11569fd_3 -+ - mysql-common=9.0.1=h3f5c77f_4 -+ - mysql-libs=9.0.1=h11569fd_4 - - nauty=2.8.8=h31becfc_1 -- - ncurses=6.5=hcccb83c_1 -+ - ncurses=6.5=ha32ae93_2 - - nest-asyncio=1.6.0=pyhd8ed1ab_1 - - networkx=3.4.2=pyh267e887_2 - - ninja=1.12.1=h70be974_0 - - ntl=11.4.3=h0d7519b_1 -- - numpy=1.26.4=py311h69ead2a_0 -+ - numpy=2.2.2=py311h6c2b7b4_0 - - openblas=0.3.28=pthreads_h3a8cbd8_1 - - openjpeg=2.5.3=h3f56577_0 - - openldap=2.6.9=h30c48ee_0 -- - openssl=3.4.0=h86ecc28_0 -+ - openssl=3.4.0=hd08dc88_1 - - packaging=24.2=pyhd8ed1ab_2 - - palp=2.20=hb9de7d4_0 -- - pari=2.15.5=h169c2a7_2_pthread -+ - pari=2.17.1=h45cace7_2_pthread - - pari-elldata=0.0.20161017=0 - - pari-galdata=0.0.20180411=0 - - pari-seadata=0.0.20090618=0 -@@ -231,7 +231,7 @@ dependencies: - - perl=5.32.1=7_h31becfc_perl5 - - pexpect=4.9.0=pyhd8ed1ab_1 - - pickleshare=0.7.5=pyhd8ed1ab_1004 -- - pillow=11.0.0=py311hb2a0dd2_0 -+ - pillow=11.1.0=py311ha4eaa5e_0 - - pip=24.3.1=pyh8b19718_2 - - pixman=0.44.2=h86a87f0_0 - - pkg-config=0.29.2=hce167ba_1009 -@@ -240,18 +240,18 @@ dependencies: - - platformdirs=4.3.6=pyhd8ed1ab_1 - - pluggy=1.5.0=pyhd8ed1ab_1 - - ppl=1.2=h984aac9_1006 -- - pplpy=0.8.9=py311ha3770eb_1 -- - primecount=7.9=hd600fc2_0 -- - primecountpy=0.1.0=py311h098ece5_4 -- - primesieve=11.1=h2f0025b_0 -- - prompt-toolkit=3.0.48=pyha770c72_1 -- - psutil=6.1.0=py311ha879c10_0 -+ - pplpy=0.8.9=py311h3d7cd5b_2 -+ - primecount=7.14=hfe4b40e_0 -+ - primecountpy=0.1.0=py311hc07b1fb_5 -+ - primesieve=12.4=h0a1ffab_0 -+ - prompt-toolkit=3.0.50=pyha770c72_0 -+ - psutil=6.1.1=py311ha879c10_0 - - pthread-stubs=0.4=h86ecc28_1002 - - ptyprocess=0.7.0=pyhd8ed1ab_1 - - pure_eval=0.2.3=pyhd8ed1ab_1 - - pycparser=2.22=pyh29332c3_1 -- - pygments=2.18.0=pyhd8ed1ab_1 -- - pyparsing=3.2.0=pyhd8ed1ab_2 -+ - pygments=2.19.1=pyhd8ed1ab_0 -+ - pyparsing=3.2.1=pyhd8ed1ab_0 - - pyproject-metadata=0.9.0=pyhd8ed1ab_1 - - pyside6=6.8.1=py311habb2604_0 - - pysocks=1.7.1=pyha55dd90_7 -@@ -265,43 +265,43 @@ dependencies: - - pyzmq=26.2.0=py311h826da9f_3 - - qd=2.3.22=h05efe27_1004 - - qhull=2020.2=h70be974_5 -- - qt6-main=6.8.1=h0d3cc05_0 -+ - qt6-main=6.8.1=ha0a94ed_2 - - readline=8.2=h8fc344f_1 - - requests=2.32.3=pyhd8ed1ab_1 - - rw=0.9=h31becfc_2 - - sagemath-db-elliptic-curves=0.8.1=hecc5488_0 - - sagemath-db-graphs=20210214=hd8ed1ab_0 - - sagemath-db-polytopes=20170220=1 -- - scipy=1.14.1=py311h5912639_2 -- - setuptools=75.6.0=pyhff2d567_1 -+ - scipy=1.15.1=py311h13dcf5b_0 -+ - setuptools=75.8.0=pyhff2d567_0 - - singular=4.4.0=hee12f27_1 - - six=1.17.0=pyhd8ed1ab_0 - - snowballstemmer=2.2.0=pyhd8ed1ab_0 - - soupsieve=2.5=pyhd8ed1ab_1 - - sphinx=8.1.3=pyhd8ed1ab_1 -- - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_2 -- - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_0 -+ - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_3 -+ - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_1 - - sphinxcontrib-applehelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-devhelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-htmlhelp=2.1.0=pyhd8ed1ab_1 - - sphinxcontrib-jsmath=1.0.1=pyhd8ed1ab_1 - - sphinxcontrib-qthelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-serializinghtml=1.1.10=pyhd8ed1ab_1 -- - sqlite=3.47.2=h578a6b9_0 -+ - sqlite=3.48.0=h578a6b9_1 - - stack_data=0.6.3=pyhd8ed1ab_1 - - symmetrica=3.0.1=hd600fc2_0 -- - sympow=2.023.6=h157afb5_3 -- - sympy=1.13.3=pyh2585a3b_104 -- - sysroot_linux-aarch64=2.17=h5b4a56d_18 -+ - sympow=2.023.6=h4d450c3_4 -+ - sympy=1.13.3=pyh2585a3b_105 -+ - sysroot_linux-aarch64=2.17=h68829e0_18 - - tachyon=0.99b6=ha0bfc61_1002 - - tk=8.6.13=h194ca79_0 - - tomli=2.2.1=pyhd8ed1ab_1 - - tornado=6.4.2=py311h5487e9b_0 - - traitlets=5.14.3=pyhd8ed1ab_1 - - typing_extensions=4.12.2=pyha770c72_1 -- - tzdata=2024b=hc8b5060_0 -- - unicodedata2=15.1.0=py311ha879c10_1 -- - urllib3=2.2.3=pyhd8ed1ab_1 -+ - tzdata=2025a=h78e105d_0 -+ - unicodedata2=16.0.0=py311ha879c10_0 -+ - urllib3=2.3.0=pyhd8ed1ab_0 - - wayland=1.23.1=h698ed42_0 - - wcwidth=0.2.13=pyhd8ed1ab_1 - - wheel=0.45.1=pyhd8ed1ab_1 -diff --git a/environment-3.11-linux.yml b/environment-3.11-linux.yml -index 2d99c14d61c..18b21418a74 100644 ---- a/environment-3.11-linux.yml -+++ b/environment-3.11-linux.yml -@@ -1,7 +1,7 @@ - name: sage-dev - # Generated by conda-lock. - # platform: linux-64 --# input_hash: 71d6929e3ba448868bcdf30d6cb1d190d88758e7272df5cf428554adbbf0ff6a -+# input_hash: 45c87b39adab7299f4500096956e14d99327f4a9bb48bc2fc7ced5996c569943 - - channels: - - conda-forge -@@ -10,12 +10,12 @@ dependencies: - - _openmp_mutex=4.5=2_kmp_llvm - - alabaster=1.0.0=pyhd8ed1ab_1 - - alsa-lib=1.2.13=hb9d3cd8_0 -- - arpack=3.9.1=nompi_h77f6705_101 -+ - arpack=3.9.1=nompi_hf03ea27_102 - - asttokens=3.0.0=pyhd8ed1ab_1 - - autoconf=2.71=pl5321h2b4cb7a_1 - - automake=1.17=pl5321ha770c72_0 - - babel=2.16.0=pyhd8ed1ab_1 -- - bdw-gc=8.0.6=h4bd325d_0 -+ - bdw-gc=8.2.8=h5888daf_1 - - beautifulsoup4=4.12.3=pyha770c72_1 - - binutils=2.43=h4852527_2 - - binutils_impl_linux-64=2.43=h4bf12b8_2 -@@ -29,33 +29,33 @@ dependencies: - - brotli-python=1.1.0=py311hfdbb021_2 - - bzip2=1.0.8=h4bc722e_7 - - c-ares=1.34.4=hb9d3cd8_0 -- - c-compiler=1.8.0=h2b85faf_1 -+ - c-compiler=1.9.0=h2b85faf_0 - - ca-certificates=2024.12.14=hbcca054_0 - - cairo=1.18.2=h3394656_1 - - cddlib=1!0.94m=h9202a9a_0 - - certifi=2024.12.14=pyhd8ed1ab_0 - - cffi=1.17.1=py311hf29c0ef_0 -- - charset-normalizer=3.4.0=pyhd8ed1ab_1 -+ - charset-normalizer=3.4.1=pyhd8ed1ab_0 - - cliquer=1.22=hd590300_1 - - colorama=0.4.6=pyhd8ed1ab_1 - - comm=0.2.2=pyhd8ed1ab_1 - - contourpy=1.3.1=py311hd18a35c_0 - - conway-polynomials=0.10=pyhd8ed1ab_0 -- - coverage=7.6.9=py311h2dc5d0c_0 -+ - coverage=7.6.10=py311h2dc5d0c_0 - - cpython=3.11.11=py311hd8ed1ab_1 -- - cxx-compiler=1.8.0=h1a2810e_1 -+ - cxx-compiler=1.9.0=h1a2810e_0 - - cycler=0.12.1=pyhd8ed1ab_1 -- - cypari2=2.1.5=py311hd2352ae_0 -+ - cypari2=2.2.1=py311h8699650_0 - - cyrus-sasl=2.1.27=h54b06d7_7 -- - cysignals=1.11.2=py311h82528dc_3 -+ - cysignals=1.12.3=py311hfdbb021_0 - - cython=3.0.11=py311h55d416d_3 - - dbus=1.13.6=h5008d03_3 -- - debugpy=1.8.11=py311hfdbb021_0 -+ - debugpy=1.8.12=py311hfdbb021_0 - - decorator=5.1.1=pyhd8ed1ab_1 - - docutils=0.21.2=pyhd8ed1ab_1 - - double-conversion=3.3.0=h59595ed_0 - - ecl=24.5.10=h0f3afd4_0 -- - eclib=20231212=h43e5eba_1 -+ - eclib=20231212=h75fb491_2 - - ecm=7.0.5=h9458935_0 - - exceptiongroup=1.2.2=pyhd8ed1ab_1 - - execnet=2.1.1=pyhd8ed1ab_1 -@@ -69,14 +69,14 @@ dependencies: - - fontconfig=2.15.0=h7e30c49_1 - - fonts-conda-ecosystem=1=0 - - fonts-conda-forge=1=0 -- - fonttools=4.55.3=py311h2dc5d0c_0 -- - fortran-compiler=1.8.0=h36df796_1 -- - fplll=5.4.5=h384768b_0 -- - fpylll=0.6.1=py311hcfae7cf_0 -+ - fonttools=4.55.6=py311h2dc5d0c_0 -+ - fortran-compiler=1.9.0=h36df796_0 -+ - fplll=5.5.0=hd20a173_0 -+ - fpylll=0.6.2=py311hf0b6740_0 - - freetype=2.12.1=h267a509_2 -- - furo=2024.8.6=pyhd8ed1ab_1 -- - gap-core=4.14.0=h3b03731_1 -- - gap-defaults=4.14.0=ha770c72_1 -+ - furo=2024.8.6=pyhd8ed1ab_2 -+ - gap-core=4.14.0=h3b03731_2 -+ - gap-defaults=4.14.0=ha770c72_2 - - gcc=13.3.0=h9576a4e_1 - - gcc_impl_linux-64=13.3.0=hfea6d02_1 - - gcc_linux-64=13.3.0=hc28eda2_7 -@@ -85,7 +85,7 @@ dependencies: - - gfortran=13.3.0=h9576a4e_1 - - gfortran_impl_linux-64=13.3.0=h10434e7_1 - - gfortran_linux-64=13.3.0=hb919d3a_7 -- - giac=1.9.0.21=h673759e_1 -+ - giac=1.9.0.21=hca478b9_2 - - givaro=4.2.0=hb789bce_0 - - glpk=5.0=h445213a_0 - - gmp=6.3.0=hac33072_2 -@@ -96,21 +96,21 @@ dependencies: - - gxx_impl_linux-64=13.3.0=hdbfa832_1 - - gxx_linux-64=13.3.0=h6834431_7 - - h2=4.1.0=pyhd8ed1ab_1 -- - harfbuzz=9.0.0=hda332d3_1 -- - hpack=4.0.0=pyhd8ed1ab_1 -- - hyperframe=6.0.1=pyhd8ed1ab_1 -+ - harfbuzz=10.2.0=h4bba637_0 -+ - hpack=4.1.0=pyhd8ed1ab_0 -+ - hyperframe=6.1.0=pyhd8ed1ab_0 - - icu=75.1=he02047a_0 - - idna=3.10=pyhd8ed1ab_1 - - igraph=0.10.15=he44f51b_1 - - imagesize=1.4.1=pyhd8ed1ab_0 - - iml=1.0.5=h623f65a_1004 -- - importlib-metadata=8.5.0=pyha770c72_1 -+ - importlib-metadata=8.6.1=pyha770c72_0 - - iniconfig=2.0.0=pyhd8ed1ab_1 - - ipykernel=6.29.5=pyh3099207_0 -- - ipython=8.30.0=pyh707e725_0 -+ - ipython=8.31.0=pyh707e725_0 - - ipywidgets=8.1.5=pyhd8ed1ab_1 - - jedi=0.19.2=pyhd8ed1ab_1 -- - jinja2=3.1.4=pyhd8ed1ab_1 -+ - jinja2=3.1.5=pyhd8ed1ab_0 - - jupyter_client=8.6.3=pyhd8ed1ab_1 - - jupyter_core=5.7.2=pyh31011fe_1 - - jupyterlab_widgets=3.0.13=pyhd8ed1ab_1 -@@ -118,7 +118,7 @@ dependencies: - - keyutils=1.6.1=h166bdaf_0 - - kiwisolver=1.4.7=py311hd18a35c_0 - - krb5=1.21.3=h659f571_0 -- - lcalc=2.0.5=h5aac1b6_2 -+ - lcalc=2.0.5=h9cf73fc_3 - - lcms2=2.16=hb7c19ff_0 - - ld_impl_linux-64=2.43=h712a8e2_2 - - lerc=4.0.0=h27087fc_0 -@@ -132,27 +132,27 @@ dependencies: - - libbrotlidec=1.1.0=hb9d3cd8_2 - - libbrotlienc=1.1.0=hb9d3cd8_2 - - libcblas=3.9.0=26_linux64_openblas -- - libclang-cpp19.1=19.1.6=default_hb5137d0_0 -- - libclang13=19.1.6=default_h9c6a7e4_0 -+ - libclang-cpp19.1=19.1.7=default_hb5137d0_0 -+ - libclang13=19.1.7=default_h9c6a7e4_0 - - libcups=2.3.3=h4637d8d_4 - - libcurl=8.11.1=h332b0f4_0 - - libdeflate=1.23=h4ddbbb0_0 - - libdrm=2.4.124=hb9d3cd8_0 -- - libedit=3.1.20191231=he28a2e2_2 -+ - libedit=3.1.20240808=pl5321h7949ede_0 - - libegl=1.7.0=ha4b6fd6_2 - - libev=4.33=hd590300_2 - - libexpat=2.6.4=h5888daf_0 - - libffi=3.4.2=h7f98852_5 -- - libflint=3.1.2=h6fb9888_101 -+ - libflint=3.1.3.1=h0aae882_101 - - libgcc=14.2.0=h77fa898_1 - - libgcc-devel_linux-64=13.3.0=h84ea5a7_101 - - libgcc-ng=14.2.0=h69a702a_1 -- - libgd=2.3.3=hd3e95f3_10 -+ - libgd=2.3.3=h6f5c62b_11 - - libgfortran=14.2.0=h69a702a_1 - - libgfortran-ng=14.2.0=h69a702a_1 - - libgfortran5=14.2.0=hd5240d6_1 - - libgl=1.7.0=ha4b6fd6_2 -- - libglib=2.82.2=h2ff4ddf_0 -+ - libglib=2.82.2=h2ff4ddf_1 - - libglvnd=1.7.0=ha4b6fd6_2 - - libglx=1.7.0=ha4b6fd6_2 - - libgomp=14.2.0=h77fa898_1 -@@ -161,27 +161,27 @@ dependencies: - - libjpeg-turbo=3.0.0=hd590300_1 - - liblapack=3.9.0=26_linux64_openblas - - liblapacke=3.9.0=26_linux64_openblas -- - libllvm19=19.1.6=ha7bfdaf_0 -+ - libllvm19=19.1.7=ha7bfdaf_0 - - liblzma=5.6.3=hb9d3cd8_1 - - liblzma-devel=5.6.3=hb9d3cd8_1 - - libnghttp2=1.64.0=h161d5f1_0 - - libnsl=2.0.1=hd590300_0 -- - libntlm=1.4=h7f98852_1002 -+ - libntlm=1.8=hb9d3cd8_0 - - libopenblas=0.3.28=pthreads_h94d23a6_1 - - libopengl=1.7.0=ha4b6fd6_2 - - libpciaccess=0.18=hd590300_0 -- - libpng=1.6.44=hadc24fc_0 -+ - libpng=1.6.45=h943b412_0 - - libpq=17.2=h3b95a9b_1 - - libsanitizer=13.3.0=heb74ff8_1 - - libsodium=1.0.20=h4ab18f5_0 -- - libsqlite=3.47.2=hee588c1_0 -+ - libsqlite=3.48.0=hee588c1_1 - - libssh2=1.11.1=hf672d98_0 - - libstdcxx=14.2.0=hc0a3c3a_1 - - libstdcxx-devel_linux-64=13.3.0=h84ea5a7_101 - - libstdcxx-ng=14.2.0=h4852527_1 - - libtiff=4.7.0=hd9ff511_3 - - libuuid=2.38.1=h0b41bf4_0 -- - libwebp-base=1.4.0=hd590300_0 -+ - libwebp-base=1.5.0=h851e524_0 - - libxcb=1.17.0=h8a09558_0 - - libxcrypt=4.4.36=hd590300_1 - - libxkbcommon=1.7.0=h2c5496b_1 -@@ -189,7 +189,7 @@ dependencies: - - libxslt=1.1.39=h76b75d6_0 - - libzlib=1.3.1=hb9d3cd8_2 - - linbox=1.7.0=h7298d08_1 -- - llvm-openmp=19.1.6=h024ca30_0 -+ - llvm-openmp=19.1.7=h024ca30_0 - - lrcalc=2.1=h5888daf_7 - - m4=1.4.18=h516909a_1001 - - m4ri=20140914=hae5d5c5_1006 -@@ -207,22 +207,22 @@ dependencies: - - mpfr=4.2.1=h90cbb55_3 - - mpmath=1.3.0=pyhd8ed1ab_1 - - munkres=1.1.4=pyh9f0ad1d_0 -- - mysql-common=9.0.1=h266115a_3 -- - mysql-libs=9.0.1=he0572af_3 -+ - mysql-common=9.0.1=h266115a_4 -+ - mysql-libs=9.0.1=he0572af_4 - - nauty=2.8.8=hd590300_1 -- - ncurses=6.5=he02047a_1 -+ - ncurses=6.5=h2d0b736_2 - - nest-asyncio=1.6.0=pyhd8ed1ab_1 - - networkx=3.4.2=pyh267e887_2 - - ninja=1.12.1=h297d8ca_0 - - ntl=11.4.3=hef3c4d3_1 -- - numpy=1.26.4=py311h64a7726_0 -+ - numpy=2.2.2=py311h5d046bc_0 - - openblas=0.3.28=pthreads_h6ec200e_1 - - openjpeg=2.5.3=h5fbd93e_0 - - openldap=2.6.9=he970967_0 -- - openssl=3.4.0=hb9d3cd8_0 -+ - openssl=3.4.0=h7b32b05_1 - - packaging=24.2=pyhd8ed1ab_2 - - palp=2.20=h36c2ea0_0 -- - pari=2.15.5=h4d4ae9b_2_pthread -+ - pari=2.17.1=ha40142e_2_pthread - - pari-elldata=0.0.20161017=0 - - pari-galdata=0.0.20180411=0 - - pari-seadata=0.0.20090618=0 -@@ -232,7 +232,7 @@ dependencies: - - perl=5.32.1=7_hd590300_perl5 - - pexpect=4.9.0=pyhd8ed1ab_1 - - pickleshare=0.7.5=pyhd8ed1ab_1004 -- - pillow=11.0.0=py311h49e9ac3_0 -+ - pillow=11.1.0=py311h1322bbf_0 - - pip=24.3.1=pyh8b19718_2 - - pixman=0.44.2=h29eaf8c_0 - - pkg-config=0.29.2=h4bc722e_1009 -@@ -241,18 +241,18 @@ dependencies: - - platformdirs=4.3.6=pyhd8ed1ab_1 - - pluggy=1.5.0=pyhd8ed1ab_1 - - ppl=1.2=h6ec01c2_1006 -- - pplpy=0.8.9=py311ha9f9f00_1 -- - primecount=7.9=hcb278e6_0 -- - primecountpy=0.1.0=py311h9547e67_4 -- - primesieve=11.1=h59595ed_0 -- - prompt-toolkit=3.0.48=pyha770c72_1 -- - psutil=6.1.0=py311h9ecbd09_0 -+ - pplpy=0.8.9=py311h17071fb_2 -+ - primecount=7.14=h530483c_0 -+ - primecountpy=0.1.0=py311hd18a35c_5 -+ - primesieve=12.4=he02047a_0 -+ - prompt-toolkit=3.0.50=pyha770c72_0 -+ - psutil=6.1.1=py311h9ecbd09_0 - - pthread-stubs=0.4=hb9d3cd8_1002 - - ptyprocess=0.7.0=pyhd8ed1ab_1 - - pure_eval=0.2.3=pyhd8ed1ab_1 - - pycparser=2.22=pyh29332c3_1 -- - pygments=2.18.0=pyhd8ed1ab_1 -- - pyparsing=3.2.0=pyhd8ed1ab_2 -+ - pygments=2.19.1=pyhd8ed1ab_0 -+ - pyparsing=3.2.1=pyhd8ed1ab_0 - - pyproject-metadata=0.9.0=pyhd8ed1ab_1 - - pyside6=6.8.1=py311h9053184_0 - - pysocks=1.7.1=pyha55dd90_7 -@@ -266,43 +266,43 @@ dependencies: - - pyzmq=26.2.0=py311h7deb3e3_3 - - qd=2.3.22=h2cc385e_1004 - - qhull=2020.2=h434a139_5 -- - qt6-main=6.8.1=h9d28a51_0 -+ - qt6-main=6.8.1=h588cce1_2 - - readline=8.2=h8228510_1 - - requests=2.32.3=pyhd8ed1ab_1 - - rw=0.9=hd590300_2 - - sagemath-db-elliptic-curves=0.8.1=hecc5488_0 - - sagemath-db-graphs=20210214=hd8ed1ab_0 - - sagemath-db-polytopes=20170220=1 -- - scipy=1.14.1=py311he9a78e4_2 -- - setuptools=75.6.0=pyhff2d567_1 -+ - scipy=1.15.1=py311hc1ac118_0 -+ - setuptools=75.8.0=pyhff2d567_0 - - singular=4.4.0=hc910cb2_1 - - six=1.17.0=pyhd8ed1ab_0 - - snowballstemmer=2.2.0=pyhd8ed1ab_0 - - soupsieve=2.5=pyhd8ed1ab_1 - - sphinx=8.1.3=pyhd8ed1ab_1 -- - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_2 -- - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_0 -+ - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_3 -+ - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_1 - - sphinxcontrib-applehelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-devhelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-htmlhelp=2.1.0=pyhd8ed1ab_1 - - sphinxcontrib-jsmath=1.0.1=pyhd8ed1ab_1 - - sphinxcontrib-qthelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-serializinghtml=1.1.10=pyhd8ed1ab_1 -- - sqlite=3.47.2=h9eae976_0 -+ - sqlite=3.48.0=h9eae976_1 - - stack_data=0.6.3=pyhd8ed1ab_1 - - symmetrica=3.0.1=hcb278e6_0 -- - sympow=2.023.6=hc6ab17c_3 -- - sympy=1.13.3=pyh2585a3b_104 -- - sysroot_linux-64=2.17=h4a8ded7_18 -+ - sympow=2.023.6=h3028977_4 -+ - sympy=1.13.3=pyh2585a3b_105 -+ - sysroot_linux-64=2.17=h0157908_18 - - tachyon=0.99b6=hba7d16a_1002 - - tk=8.6.13=noxft_h4845f30_101 - - tomli=2.2.1=pyhd8ed1ab_1 - - tornado=6.4.2=py311h9ecbd09_0 - - traitlets=5.14.3=pyhd8ed1ab_1 - - typing_extensions=4.12.2=pyha770c72_1 -- - tzdata=2024b=hc8b5060_0 -- - unicodedata2=15.1.0=py311h9ecbd09_1 -- - urllib3=2.2.3=pyhd8ed1ab_1 -+ - tzdata=2025a=h78e105d_0 -+ - unicodedata2=16.0.0=py311h9ecbd09_0 -+ - urllib3=2.3.0=pyhd8ed1ab_0 - - wayland=1.23.1=h3e06ad9_0 - - wcwidth=0.2.13=pyhd8ed1ab_1 - - wheel=0.45.1=pyhd8ed1ab_1 -diff --git a/environment-3.11-macos-x86_64.yml b/environment-3.11-macos-x86_64.yml -index fb34c25a567..b68c0feb98e 100644 ---- a/environment-3.11-macos-x86_64.yml -+++ b/environment-3.11-macos-x86_64.yml -@@ -1,19 +1,19 @@ - name: sage-dev - # Generated by conda-lock. - # platform: osx-64 --# input_hash: 58971dc791eb5f5f7e12b0e44db07ecd9b2fc48def89f671effaabd2bd0720d6 -+# input_hash: 8fa3ecd8c3d833b875f3db11bdea6e4c970fe7eae9e991e45ec6979be4e7b00f - - channels: - - conda-forge - dependencies: - - alabaster=1.0.0=pyhd8ed1ab_1 - - appnope=0.1.4=pyhd8ed1ab_1 -- - arpack=3.9.1=nompi_hf81eadf_101 -+ - arpack=3.9.1=nompi_hdfe9103_102 - - asttokens=3.0.0=pyhd8ed1ab_1 - - autoconf=2.71=pl5321hed12c24_1 - - automake=1.17=pl5321h694c41f_0 - - babel=2.16.0=pyhd8ed1ab_1 -- - bdw-gc=8.0.6=h940c156_0 -+ - bdw-gc=8.2.8=h240833e_1 - - beautifulsoup4=4.12.3=pyha770c72_1 - - blas=2.126=openblas - - blas-devel=3.9.0=26_osx64_openblas -@@ -24,40 +24,40 @@ dependencies: - - brotli-python=1.1.0=py311hd89902b_2 - - bzip2=1.0.8=hfdf4475_7 - - c-ares=1.34.4=hf13058a_0 -- - c-compiler=1.8.0=hfc4bf79_1 -+ - c-compiler=1.9.0=h09a7c41_0 - - ca-certificates=2024.12.14=h8857fd0_0 -- - cctools=1010.6=h5b2de21_2 -- - cctools_osx-64=1010.6=hea4301f_2 -+ - cctools=1010.6=hd3558d4_2 -+ - cctools_osx-64=1010.6=h00edd4c_2 - - cddlib=1!0.94m=h0f52abe_0 - - certifi=2024.12.14=pyhd8ed1ab_0 - - cffi=1.17.1=py311h137bacd_0 -- - charset-normalizer=3.4.0=pyhd8ed1ab_1 -- - clang=17.0.6=default_he371ed4_7 -- - clang-17=17.0.6=default_hb173f14_7 -- - clang_impl_osx-64=17.0.6=h1af8efd_23 -- - clang_osx-64=17.0.6=h7e5c614_23 -- - clangxx=17.0.6=default_he371ed4_7 -- - clangxx_impl_osx-64=17.0.6=hc3430b7_23 -- - clangxx_osx-64=17.0.6=h7e5c614_23 -+ - charset-normalizer=3.4.1=pyhd8ed1ab_0 -+ - clang=18.1.8=default_h179603d_5 -+ - clang-18=18.1.8=default_h0c94c6a_5 -+ - clang_impl_osx-64=18.1.8=h6a44ed1_23 -+ - clang_osx-64=18.1.8=h7e5c614_23 -+ - clangxx=18.1.8=default_h179603d_5 -+ - clangxx_impl_osx-64=18.1.8=h4b7810f_23 -+ - clangxx_osx-64=18.1.8=h7e5c614_23 - - cliquer=1.22=h10d778d_1 - - colorama=0.4.6=pyhd8ed1ab_1 - - comm=0.2.2=pyhd8ed1ab_1 -- - compiler-rt=17.0.6=h1020d70_2 -- - compiler-rt_osx-64=17.0.6=hf2b8a54_2 -+ - compiler-rt=18.1.8=h1020d70_1 -+ - compiler-rt_osx-64=18.1.8=hf2b8a54_1 - - contourpy=1.3.1=py311h4e34fa0_0 - - conway-polynomials=0.10=pyhd8ed1ab_0 -- - coverage=7.6.9=py311ha3cf9ac_0 -+ - coverage=7.6.10=py311ha3cf9ac_0 - - cpython=3.11.11=py311hd8ed1ab_1 -- - cxx-compiler=1.8.0=h385f146_1 -+ - cxx-compiler=1.9.0=h20888b2_0 - - cycler=0.12.1=pyhd8ed1ab_1 -- - cypari2=2.1.5=py311h4fde0ae_0 -- - cysignals=1.11.2=py311h8a58447_3 -+ - cypari2=2.2.1=py311h29339b9_0 -+ - cysignals=1.12.3=py311hc356e98_0 - - cython=3.0.11=py311h4cb39f0_3 -- - debugpy=1.8.11=py311hc356e98_0 -+ - debugpy=1.8.12=py311hc356e98_0 - - decorator=5.1.1=pyhd8ed1ab_1 - - docutils=0.21.2=pyhd8ed1ab_1 - - ecl=24.5.10=h56bac16_0 -- - eclib=20231212=h960c116_1 -+ - eclib=20231212=ha63dd29_2 - - ecm=7.0.5=h4f6b447_0 - - exceptiongroup=1.2.2=pyhd8ed1ab_1 - - execnet=2.1.1=pyhd8ed1ab_1 -@@ -71,14 +71,14 @@ dependencies: - - fontconfig=2.15.0=h37eeddb_1 - - fonts-conda-ecosystem=1=0 - - fonts-conda-forge=1=0 -- - fonttools=4.55.3=py311ha3cf9ac_0 -- - fortran-compiler=1.8.0=h33d1f46_1 -- - fplll=5.4.5=hb7981ad_0 -- - fpylll=0.6.1=py311h85fbf69_0 -+ - fonttools=4.55.6=py311ha3cf9ac_0 -+ - fortran-compiler=1.9.0=h02557f8_0 -+ - fplll=5.5.0=h6ede486_0 -+ - fpylll=0.6.2=py311h793c761_0 - - freetype=2.12.1=h60636b9_2 -- - furo=2024.8.6=pyhd8ed1ab_1 -- - gap-core=4.14.0=hb9686a1_1 -- - gap-defaults=4.14.0=h694c41f_1 -+ - furo=2024.8.6=pyhd8ed1ab_2 -+ - gap-core=4.14.0=hb9686a1_2 -+ - gap-defaults=4.14.0=h694c41f_2 - - gettext=0.22.5=hdfe23c8_3 - - gettext-tools=0.22.5=hdfe23c8_3 - - gf2x=1.3.0=h35ac7d9_3 -@@ -86,37 +86,37 @@ dependencies: - - gfortran=13.2.0=h2c809b3_1 - - gfortran_impl_osx-64=13.2.0=h2bc304d_3 - - gfortran_osx-64=13.2.0=h18f7dce_1 -- - giac=1.9.0.21=h92f3f65_1 -+ - giac=1.9.0.21=h381f543_2 - - givaro=4.2.0=h1b3d6f7_0 - - glpk=5.0=h3cb5acd_0 - - gmp=6.3.0=hf036a51_2 - - gmpy2=2.1.5=py311h7945f45_3 - - gsl=2.7=h93259b0_0 - - h2=4.1.0=pyhd8ed1ab_1 -- - hpack=4.0.0=pyhd8ed1ab_1 -- - hyperframe=6.0.1=pyhd8ed1ab_1 -+ - hpack=4.1.0=pyhd8ed1ab_0 -+ - hyperframe=6.1.0=pyhd8ed1ab_0 - - icu=75.1=h120a0e1_0 - - idna=3.10=pyhd8ed1ab_1 - - igraph=0.10.15=h5479cbe_1 - - imagesize=1.4.1=pyhd8ed1ab_0 - - iml=1.0.5=h61918c1_1004 -- - importlib-metadata=8.5.0=pyha770c72_1 -+ - importlib-metadata=8.6.1=pyha770c72_0 - - iniconfig=2.0.0=pyhd8ed1ab_1 - - ipykernel=6.29.5=pyh57ce528_0 -- - ipython=8.30.0=pyh707e725_0 -+ - ipython=8.31.0=pyh707e725_0 - - ipywidgets=8.1.5=pyhd8ed1ab_1 - - isl=0.26=imath32_h2e86a7b_101 - - jedi=0.19.2=pyhd8ed1ab_1 -- - jinja2=3.1.4=pyhd8ed1ab_1 -+ - jinja2=3.1.5=pyhd8ed1ab_0 - - jupyter_client=8.6.3=pyhd8ed1ab_1 - - jupyter_core=5.7.2=pyh31011fe_1 - - jupyterlab_widgets=3.0.13=pyhd8ed1ab_1 - - kiwisolver=1.4.7=py311hf2f7c97_0 - - krb5=1.21.3=h37d8d59_0 -- - lcalc=2.0.5=h547a6ed_2 -+ - lcalc=2.0.5=h0f747f7_3 - - lcms2=2.16=ha2f27b4_0 -- - ld64=951.9=h0a3eb4e_2 -- - ld64_osx-64=951.9=h5ffbe8e_2 -+ - ld64=951.9=h4e51db5_2 -+ - ld64_osx-64=951.9=hc8d1a19_2 - - lerc=4.0.0=hb486fe8_0 - - libasprintf=0.22.5=hdfe23c8_3 - - libasprintf-devel=0.22.5=hdfe23c8_3 -@@ -130,17 +130,17 @@ dependencies: - - libbrotlidec=1.1.0=h00291cd_2 - - libbrotlienc=1.1.0=h00291cd_2 - - libcblas=3.9.0=26_osx64_openblas -- - libclang-cpp17=17.0.6=default_hb173f14_7 -+ - libclang-cpp18.1=18.1.8=default_h0c94c6a_5 - - libcurl=8.11.1=h5dec5d8_0 -- - libcxx=19.1.6=hf95d169_1 -- - libcxx-devel=17.0.6=h8f8a49f_6 -+ - libcxx=19.1.7=hf95d169_0 -+ - libcxx-devel=18.1.8=h7c275be_7 - - libdeflate=1.23=he65b83e_0 -- - libedit=3.1.20191231=h0678c8f_2 -+ - libedit=3.1.20240808=pl5321ha958ccf_0 - - libev=4.33=h10d778d_2 - - libexpat=2.6.4=h240833e_0 - - libffi=3.4.2=h0d85af4_5 -- - libflint=3.1.2=h1d27844_101 -- - libgd=2.3.3=h2e77e4f_10 -+ - libflint=3.1.3.1=h9ab60bc_101 -+ - libgd=2.3.3=h8555400_11 - - libgettextpo=0.22.5=hdfe23c8_3 - - libgettextpo-devel=0.22.5=hdfe23c8_3 - - libgfortran=5.0.0=13_2_0_h97931a8_3 -@@ -153,23 +153,24 @@ dependencies: - - libjpeg-turbo=3.0.0=h0dc2134_1 - - liblapack=3.9.0=26_osx64_openblas - - liblapacke=3.9.0=26_osx64_openblas -- - libllvm17=17.0.6=hbedff68_1 -+ - libllvm18=18.1.8=h9ce406d_2 - - liblzma=5.6.3=hd471939_1 - - liblzma-devel=5.6.3=hd471939_1 - - libnghttp2=1.64.0=hc7306c3_0 - - libopenblas=0.3.28=openmp_hbf64a52_1 -- - libpng=1.6.44=h4b8f8c9_0 -+ - libpng=1.6.45=h3c4a55f_0 - - libsodium=1.0.20=hfdf4475_0 -- - libsqlite=3.47.2=hdb6dae5_0 -+ - libsqlite=3.48.0=hdb6dae5_1 - - libssh2=1.11.1=h3dc7d44_0 - - libtiff=4.7.0=hb77a491_3 -- - libwebp-base=1.4.0=h10d778d_0 -+ - libwebp-base=1.5.0=h6cf52b4_0 - - libxcb=1.17.0=hf1f96e2_0 - - libxml2=2.13.5=hebb159f_1 - - libzlib=1.3.1=hd23fc13_2 - - linbox=1.7.0=h9325161_1 -- - llvm-openmp=19.1.6=ha54dae1_0 -- - llvm-tools=17.0.6=hbedff68_1 -+ - llvm-openmp=19.1.7=ha54dae1_0 -+ - llvm-tools=18.1.8=h9ce406d_2 -+ - llvm-tools-18=18.1.8=h9ce406d_2 - - lrcalc=2.1=hac325c4_7 - - m4=1.4.18=haf1e3a3_1001 - - m4ri=20140914=hd82a5f3_1006 -@@ -188,18 +189,18 @@ dependencies: - - mpmath=1.3.0=pyhd8ed1ab_1 - - munkres=1.1.4=pyh9f0ad1d_0 - - nauty=2.8.8=h10d778d_1 -- - ncurses=6.5=hf036a51_1 -+ - ncurses=6.5=h0622a9a_2 - - nest-asyncio=1.6.0=pyhd8ed1ab_1 - - networkx=3.4.2=pyh267e887_2 - - ninja=1.12.1=h3c5361c_0 - - ntl=11.4.3=h0ab3c2f_1 -- - numpy=1.26.4=py311hc43a94b_0 -+ - numpy=2.2.2=py311h27c81cd_0 - - openblas=0.3.28=openmp_h30af337_1 - - openjpeg=2.5.3=h7fd6d84_0 -- - openssl=3.4.0=hd471939_0 -+ - openssl=3.4.0=hc426f3f_1 - - packaging=24.2=pyhd8ed1ab_2 - - palp=2.20=hbcb3906_0 -- - pari=2.15.5=h7ba67ff_2_pthread -+ - pari=2.17.1=h1ed0f1a_2_pthread - - pari-elldata=0.0.20161017=0 - - pari-galdata=0.0.20180411=0 - - pari-seadata=0.0.20090618=0 -@@ -208,7 +209,7 @@ dependencies: - - perl=5.32.1=7_h10d778d_perl5 - - pexpect=4.9.0=pyhd8ed1ab_1 - - pickleshare=0.7.5=pyhd8ed1ab_1004 -- - pillow=11.0.0=py311h1f68098_0 -+ - pillow=11.1.0=py311h25da234_0 - - pip=24.3.1=pyh8b19718_2 - - pkg-config=0.29.2=hf7e621a_1009 - - pkgconfig=1.5.5=pyhd8ed1ab_5 -@@ -216,18 +217,18 @@ dependencies: - - platformdirs=4.3.6=pyhd8ed1ab_1 - - pluggy=1.5.0=pyhd8ed1ab_1 - - ppl=1.2=ha60d53e_1006 -- - pplpy=0.8.9=py311h922ec50_1 -- - primecount=7.6=ha894c9a_0 -- - primecountpy=0.1.0=py311h5fe6e05_4 -- - primesieve=11.0=hf0c8a7f_0 -- - prompt-toolkit=3.0.48=pyha770c72_1 -- - psutil=6.1.0=py311h1314207_0 -+ - pplpy=0.8.9=py311h221ab62_2 -+ - primecount=7.14=h28dbb38_0 -+ - primecountpy=0.1.0=py311h4e34fa0_5 -+ - primesieve=12.4=hf036a51_0 -+ - prompt-toolkit=3.0.50=pyha770c72_0 -+ - psutil=6.1.1=py311h4d7f069_0 - - pthread-stubs=0.4=h00291cd_1002 - - ptyprocess=0.7.0=pyhd8ed1ab_1 - - pure_eval=0.2.3=pyhd8ed1ab_1 - - pycparser=2.22=pyh29332c3_1 -- - pygments=2.18.0=pyhd8ed1ab_1 -- - pyparsing=3.2.0=pyhd8ed1ab_2 -+ - pygments=2.19.1=pyhd8ed1ab_0 -+ - pyparsing=3.2.1=pyhd8ed1ab_0 - - pyproject-metadata=0.9.0=pyhd8ed1ab_1 - - pysocks=1.7.1=pyha55dd90_7 - - pytest=8.3.4=pyhd8ed1ab_1 -@@ -246,27 +247,27 @@ dependencies: - - sagemath-db-elliptic-curves=0.8.1=hecc5488_0 - - sagemath-db-graphs=20210214=hd8ed1ab_0 - - sagemath-db-polytopes=20170220=1 -- - scipy=1.14.1=py311h86b91e6_2 -- - setuptools=75.6.0=pyhff2d567_1 -+ - scipy=1.15.1=py311h9d25053_0 -+ - setuptools=75.8.0=pyhff2d567_0 - - sigtool=0.1.3=h88f4db0_0 - - singular=4.4.0=h604985e_1 - - six=1.17.0=pyhd8ed1ab_0 - - snowballstemmer=2.2.0=pyhd8ed1ab_0 - - soupsieve=2.5=pyhd8ed1ab_1 - - sphinx=8.1.3=pyhd8ed1ab_1 -- - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_2 -- - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_0 -+ - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_3 -+ - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_1 - - sphinxcontrib-applehelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-devhelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-htmlhelp=2.1.0=pyhd8ed1ab_1 - - sphinxcontrib-jsmath=1.0.1=pyhd8ed1ab_1 - - sphinxcontrib-qthelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-serializinghtml=1.1.10=pyhd8ed1ab_1 -- - sqlite=3.47.2=h2e4c9dc_0 -+ - sqlite=3.48.0=h2e4c9dc_1 - - stack_data=0.6.3=pyhd8ed1ab_1 - - symmetrica=3.0.1=hf0c8a7f_0 -- - sympow=2.023.6=h115ba6a_3 -- - sympy=1.13.3=pyh2585a3b_104 -+ - sympow=2.023.6=h7305399_4 -+ - sympy=1.13.3=pyh2585a3b_105 - - tachyon=0.99b6=h3a1d103_1002 - - tapi=1300.6.5=h390ca13_0 - - tk=8.6.13=h1abcd95_1 -@@ -274,9 +275,9 @@ dependencies: - - tornado=6.4.2=py311h4d7f069_0 - - traitlets=5.14.3=pyhd8ed1ab_1 - - typing_extensions=4.12.2=pyha770c72_1 -- - tzdata=2024b=hc8b5060_0 -- - unicodedata2=15.1.0=py311h1314207_1 -- - urllib3=2.2.3=pyhd8ed1ab_1 -+ - tzdata=2025a=h78e105d_0 -+ - unicodedata2=16.0.0=py311h4d7f069_0 -+ - urllib3=2.3.0=pyhd8ed1ab_0 - - wcwidth=0.2.13=pyhd8ed1ab_1 - - wheel=0.45.1=pyhd8ed1ab_1 - - widgetsnbextension=4.0.13=pyhd8ed1ab_1 -diff --git a/environment-3.11-macos.yml b/environment-3.11-macos.yml -index ec10b78a4b5..84656e580e0 100644 ---- a/environment-3.11-macos.yml -+++ b/environment-3.11-macos.yml -@@ -1,19 +1,19 @@ - name: sage-dev - # Generated by conda-lock. - # platform: osx-arm64 --# input_hash: 4396163dbc4fafd471282f306c16bb7bd73ecc3c006335c8faf512742014e1e4 -+# input_hash: 5e8fbac460b9515b4cab214ac84ab31b22e5e12e86962f7770faaa3a3c662466 - - channels: - - conda-forge - dependencies: - - alabaster=1.0.0=pyhd8ed1ab_1 - - appnope=0.1.4=pyhd8ed1ab_1 -- - arpack=3.9.1=nompi_h593882a_101 -+ - arpack=3.9.1=nompi_h1f29f7c_102 - - asttokens=3.0.0=pyhd8ed1ab_1 - - autoconf=2.71=pl5321hcd07c0c_1 - - automake=1.17=pl5321hce30654_0 - - babel=2.16.0=pyhd8ed1ab_1 -- - bdw-gc=8.0.6=hc021e02_0 -+ - bdw-gc=8.2.8=h286801f_1 - - beautifulsoup4=4.12.3=pyha770c72_1 - - blas=2.126=openblas - - blas-devel=3.9.0=26_osxarm64_openblas -@@ -24,40 +24,40 @@ dependencies: - - brotli-python=1.1.0=py311h3f08180_2 - - bzip2=1.0.8=h99b78c6_7 - - c-ares=1.34.4=h5505292_0 -- - c-compiler=1.8.0=hf48404e_1 -+ - c-compiler=1.9.0=hdf49b6b_0 - - ca-certificates=2024.12.14=hf0a4a13_0 -- - cctools=1010.6=hf67d63f_2 -- - cctools_osx-arm64=1010.6=h623e0ac_2 -+ - cctools=1010.6=h4c9edd9_2 -+ - cctools_osx-arm64=1010.6=h908b477_2 - - cddlib=1!0.94m=h6d7a090_0 - - certifi=2024.12.14=pyhd8ed1ab_0 - - cffi=1.17.1=py311h3a79f62_0 -- - charset-normalizer=3.4.0=pyhd8ed1ab_1 -- - clang=17.0.6=default_h360f5da_7 -- - clang-17=17.0.6=default_h146c034_7 -- - clang_impl_osx-arm64=17.0.6=he47c785_23 -- - clang_osx-arm64=17.0.6=h07b0088_23 -- - clangxx=17.0.6=default_h360f5da_7 -- - clangxx_impl_osx-arm64=17.0.6=h50f59cd_23 -- - clangxx_osx-arm64=17.0.6=h07b0088_23 -+ - charset-normalizer=3.4.1=pyhd8ed1ab_0 -+ - clang=18.1.8=default_h675cc0c_5 -+ - clang-18=18.1.8=default_h5c12605_5 -+ - clang_impl_osx-arm64=18.1.8=h2ae9ea5_23 -+ - clang_osx-arm64=18.1.8=h07b0088_23 -+ - clangxx=18.1.8=default_h675cc0c_5 -+ - clangxx_impl_osx-arm64=18.1.8=h555f467_23 -+ - clangxx_osx-arm64=18.1.8=h07b0088_23 - - cliquer=1.22=h93a5062_1 - - colorama=0.4.6=pyhd8ed1ab_1 - - comm=0.2.2=pyhd8ed1ab_1 -- - compiler-rt=17.0.6=h856b3c1_2 -- - compiler-rt_osx-arm64=17.0.6=h832e737_2 -+ - compiler-rt=18.1.8=h856b3c1_1 -+ - compiler-rt_osx-arm64=18.1.8=h832e737_1 - - contourpy=1.3.1=py311h210dab8_0 - - conway-polynomials=0.10=pyhd8ed1ab_0 -- - coverage=7.6.9=py311h4921393_0 -+ - coverage=7.6.10=py311h4921393_0 - - cpython=3.11.11=py311hd8ed1ab_1 -- - cxx-compiler=1.8.0=h18dbf2f_1 -+ - cxx-compiler=1.9.0=hba80287_0 - - cycler=0.12.1=pyhd8ed1ab_1 -- - cypari2=2.1.5=py311h2c49a9d_0 -- - cysignals=1.11.2=py311he42fc87_3 -+ - cypari2=2.2.1=py311haabaa81_0 -+ - cysignals=1.12.3=py311h155a34a_0 - - cython=3.0.11=py311hf7f79b8_3 -- - debugpy=1.8.11=py311h155a34a_0 -+ - debugpy=1.8.12=py311h155a34a_0 - - decorator=5.1.1=pyhd8ed1ab_1 - - docutils=0.21.2=pyhd8ed1ab_1 - - ecl=23.9.9=h1d9728a_0 -- - eclib=20231212=h3d50bd9_1 -+ - eclib=20231212=hc39b9a7_2 - - ecm=7.0.5=h41d338b_0 - - exceptiongroup=1.2.2=pyhd8ed1ab_1 - - execnet=2.1.1=pyhd8ed1ab_1 -@@ -71,14 +71,14 @@ dependencies: - - fontconfig=2.15.0=h1383a14_1 - - fonts-conda-ecosystem=1=0 - - fonts-conda-forge=1=0 -- - fonttools=4.55.3=py311h4921393_0 -- - fortran-compiler=1.8.0=hc3477c4_1 -- - fplll=5.4.5=hb7d509d_0 -- - fpylll=0.6.1=py311h341b96b_0 -+ - fonttools=4.55.6=py311h4921393_0 -+ - fortran-compiler=1.9.0=h5692697_0 -+ - fplll=5.5.0=h2a2278a_0 -+ - fpylll=0.6.2=py311h4044dbd_0 - - freetype=2.12.1=hadb7bae_2 -- - furo=2024.8.6=pyhd8ed1ab_1 -- - gap-core=4.14.0=h25f1785_1 -- - gap-defaults=4.14.0=hce30654_1 -+ - furo=2024.8.6=pyhd8ed1ab_2 -+ - gap-core=4.14.0=h25f1785_2 -+ - gap-defaults=4.14.0=hce30654_2 - - gettext=0.22.5=h8414b35_3 - - gettext-tools=0.22.5=h8414b35_3 - - gf2x=1.3.0=hf8f8af4_3 -@@ -86,37 +86,37 @@ dependencies: - - gfortran=13.2.0=h1ca8e4b_1 - - gfortran_impl_osx-arm64=13.2.0=h252ada1_3 - - gfortran_osx-arm64=13.2.0=h57527a5_1 -- - giac=1.9.0.21=h1c96721_1 -+ - giac=1.9.0.21=h573964a_2 - - givaro=4.2.0=h018886a_0 - - glpk=5.0=h6d7a090_0 - - gmp=6.3.0=h7bae524_2 - - gmpy2=2.1.5=py311hb5d9ff4_3 - - gsl=2.7=h6e638da_0 - - h2=4.1.0=pyhd8ed1ab_1 -- - hpack=4.0.0=pyhd8ed1ab_1 -- - hyperframe=6.0.1=pyhd8ed1ab_1 -+ - hpack=4.1.0=pyhd8ed1ab_0 -+ - hyperframe=6.1.0=pyhd8ed1ab_0 - - icu=75.1=hfee45f7_0 - - idna=3.10=pyhd8ed1ab_1 - - igraph=0.10.15=h3fe6531_1 - - imagesize=1.4.1=pyhd8ed1ab_0 - - iml=1.0.5=hd73f12c_1004 -- - importlib-metadata=8.5.0=pyha770c72_1 -+ - importlib-metadata=8.6.1=pyha770c72_0 - - iniconfig=2.0.0=pyhd8ed1ab_1 - - ipykernel=6.29.5=pyh57ce528_0 -- - ipython=8.30.0=pyh707e725_0 -+ - ipython=8.31.0=pyh707e725_0 - - ipywidgets=8.1.5=pyhd8ed1ab_1 - - isl=0.26=imath32_h347afa1_101 - - jedi=0.19.2=pyhd8ed1ab_1 -- - jinja2=3.1.4=pyhd8ed1ab_1 -+ - jinja2=3.1.5=pyhd8ed1ab_0 - - jupyter_client=8.6.3=pyhd8ed1ab_1 - - jupyter_core=5.7.2=pyh31011fe_1 - - jupyterlab_widgets=3.0.13=pyhd8ed1ab_1 - - kiwisolver=1.4.7=py311h2c37856_0 - - krb5=1.21.3=h237132a_0 -- - lcalc=2.0.5=h4a402bc_2 -+ - lcalc=2.0.5=hdaf6845_3 - - lcms2=2.16=ha0e7c42_0 -- - ld64=951.9=h39a299f_2 -- - ld64_osx-arm64=951.9=h3f9b568_2 -+ - ld64=951.9=h4c6efb1_2 -+ - ld64_osx-arm64=951.9=hfc0fa09_2 - - lerc=4.0.0=h9a09cb3_0 - - libasprintf=0.22.5=h8414b35_3 - - libasprintf-devel=0.22.5=h8414b35_3 -@@ -130,23 +130,23 @@ dependencies: - - libbrotlidec=1.1.0=hd74edd7_2 - - libbrotlienc=1.1.0=hd74edd7_2 - - libcblas=3.9.0=26_osxarm64_openblas -- - libclang-cpp17=17.0.6=default_h146c034_7 -+ - libclang-cpp18.1=18.1.8=default_h5c12605_5 - - libcurl=8.11.1=h73640d1_0 -- - libcxx=19.1.6=ha82da77_1 -- - libcxx-devel=17.0.6=h86353a2_6 -+ - libcxx=19.1.7=ha82da77_0 -+ - libcxx-devel=18.1.8=h6dc3340_7 - - libdeflate=1.23=hec38601_0 -- - libedit=3.1.20191231=hc8eb9b7_2 -+ - libedit=3.1.20240808=pl5321hafb1f1b_0 - - libev=4.33=h93a5062_2 - - libexpat=2.6.4=h286801f_0 - - libffi=3.4.2=h3422bc3_5 -- - libflint=3.1.2=he28cf6d_101 -- - libgd=2.3.3=hac1b3a8_10 -+ - libflint=3.1.3.1=ha3035ea_101 -+ - libgd=2.3.3=hb2c3a21_11 - - libgettextpo=0.22.5=h8414b35_3 - - libgettextpo-devel=0.22.5=h8414b35_3 - - libgfortran=5.0.0=13_2_0_hd922786_3 - - libgfortran-devel_osx-arm64=13.2.0=h5d7a38c_3 - - libgfortran5=13.2.0=hf226fd6_3 -- - libglib=2.82.2=h07bd6cf_0 -+ - libglib=2.82.2=hdff4504_1 - - libhomfly=1.02r6=h93a5062_1 - - libiconv=1.17=h0d3ecfb_2 - - libintl=0.22.5=h8414b35_3 -@@ -154,23 +154,24 @@ dependencies: - - libjpeg-turbo=3.0.0=hb547adb_1 - - liblapack=3.9.0=26_osxarm64_openblas - - liblapacke=3.9.0=26_osxarm64_openblas -- - libllvm17=17.0.6=h5090b49_2 -+ - libllvm18=18.1.8=h5090b49_2 - - liblzma=5.6.3=h39f12f2_1 - - liblzma-devel=5.6.3=h39f12f2_1 - - libnghttp2=1.64.0=h6d7220d_0 - - libopenblas=0.3.28=openmp_hf332438_1 -- - libpng=1.6.44=hc14010f_0 -+ - libpng=1.6.45=h3783ad8_0 - - libsodium=1.0.20=h99b78c6_0 -- - libsqlite=3.47.2=h3f77e49_0 -+ - libsqlite=3.48.0=h3f77e49_1 - - libssh2=1.11.1=h9cc3647_0 - - libtiff=4.7.0=h551f018_3 -- - libwebp-base=1.4.0=h93a5062_0 -+ - libwebp-base=1.5.0=h2471fea_0 - - libxcb=1.17.0=hdb1d25a_0 - - libxml2=2.13.5=h178c5d8_1 - - libzlib=1.3.1=h8359307_2 - - linbox=1.7.0=h9da6ecd_1 -- - llvm-openmp=19.1.6=hdb05f8b_0 -- - llvm-tools=17.0.6=h5090b49_2 -+ - llvm-openmp=19.1.7=hdb05f8b_0 -+ - llvm-tools=18.1.8=h5090b49_2 -+ - llvm-tools-18=18.1.8=h5090b49_2 - - lrcalc=2.1=hf9b8971_7 - - m4=1.4.18=h642e427_1001 - - m4ri=20140914=hc97c1ff_1006 -@@ -189,18 +190,18 @@ dependencies: - - mpmath=1.3.0=pyhd8ed1ab_1 - - munkres=1.1.4=pyh9f0ad1d_0 - - nauty=2.8.8=h93a5062_1 -- - ncurses=6.5=h7bae524_1 -+ - ncurses=6.5=h5e97a16_2 - - nest-asyncio=1.6.0=pyhd8ed1ab_1 - - networkx=3.4.2=pyh267e887_2 - - ninja=1.12.1=h420ef59_0 - - ntl=11.4.3=hbb3f309_1 -- - numpy=1.26.4=py311h7125741_0 -+ - numpy=2.2.2=py311h762c074_0 - - openblas=0.3.28=openmp_hea878ba_1 - - openjpeg=2.5.3=h8a3d83b_0 -- - openssl=3.4.0=h39f12f2_0 -+ - openssl=3.4.0=h81ee809_1 - - packaging=24.2=pyhd8ed1ab_2 - - palp=2.20=h27ca646_0 -- - pari=2.15.5=h4f2304c_2_pthread -+ - pari=2.17.1=h49d18c7_2_pthread - - pari-elldata=0.0.20161017=0 - - pari-galdata=0.0.20180411=0 - - pari-seadata=0.0.20090618=0 -@@ -210,7 +211,7 @@ dependencies: - - perl=5.32.1=7_h4614cfb_perl5 - - pexpect=4.9.0=pyhd8ed1ab_1 - - pickleshare=0.7.5=pyhd8ed1ab_1004 -- - pillow=11.0.0=py311h3894ae9_0 -+ - pillow=11.1.0=py311hb9ba9e9_0 - - pip=24.3.1=pyh8b19718_2 - - pkg-config=0.29.2=hde07d2e_1009 - - pkgconfig=1.5.5=pyhd8ed1ab_5 -@@ -218,18 +219,18 @@ dependencies: - - platformdirs=4.3.6=pyhd8ed1ab_1 - - pluggy=1.5.0=pyhd8ed1ab_1 - - ppl=1.2=h8b147cf_1006 -- - pplpy=0.8.9=py311h3d77d83_1 -- - primecount=7.6=hb6e4faa_0 -- - primecountpy=0.1.0=py311he4fd1f5_4 -- - primesieve=11.0=hb7217d7_0 -- - prompt-toolkit=3.0.48=pyha770c72_1 -- - psutil=6.1.0=py311hae2e1ce_0 -+ - pplpy=0.8.9=py311h911f23a_2 -+ - primecount=7.14=ha84d530_0 -+ - primecountpy=0.1.0=py311h210dab8_5 -+ - primesieve=12.4=h00cdb27_0 -+ - prompt-toolkit=3.0.50=pyha770c72_0 -+ - psutil=6.1.1=py311h917b07b_0 - - pthread-stubs=0.4=hd74edd7_1002 - - ptyprocess=0.7.0=pyhd8ed1ab_1 - - pure_eval=0.2.3=pyhd8ed1ab_1 - - pycparser=2.22=pyh29332c3_1 -- - pygments=2.18.0=pyhd8ed1ab_1 -- - pyparsing=3.2.0=pyhd8ed1ab_2 -+ - pygments=2.19.1=pyhd8ed1ab_0 -+ - pyparsing=3.2.1=pyhd8ed1ab_0 - - pyproject-metadata=0.9.0=pyhd8ed1ab_1 - - pysocks=1.7.1=pyha55dd90_7 - - pytest=8.3.4=pyhd8ed1ab_1 -@@ -248,27 +249,27 @@ dependencies: - - sagemath-db-elliptic-curves=0.8.1=hecc5488_0 - - sagemath-db-graphs=20210214=hd8ed1ab_0 - - sagemath-db-polytopes=20170220=1 -- - scipy=1.14.1=py311hf056e50_2 -- - setuptools=75.6.0=pyhff2d567_1 -+ - scipy=1.15.1=py311h809cfb5_0 -+ - setuptools=75.8.0=pyhff2d567_0 - - sigtool=0.1.3=h44b9a77_0 - - singular=4.4.0=h5a8969a_1 - - six=1.17.0=pyhd8ed1ab_0 - - snowballstemmer=2.2.0=pyhd8ed1ab_0 - - soupsieve=2.5=pyhd8ed1ab_1 - - sphinx=8.1.3=pyhd8ed1ab_1 -- - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_2 -- - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_0 -+ - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_3 -+ - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_1 - - sphinxcontrib-applehelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-devhelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-htmlhelp=2.1.0=pyhd8ed1ab_1 - - sphinxcontrib-jsmath=1.0.1=pyhd8ed1ab_1 - - sphinxcontrib-qthelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-serializinghtml=1.1.10=pyhd8ed1ab_1 -- - sqlite=3.47.2=hd7222ec_0 -+ - sqlite=3.48.0=hd7222ec_1 - - stack_data=0.6.3=pyhd8ed1ab_1 - - symmetrica=3.0.1=hb7217d7_0 -- - sympow=2.023.6=hb0babe8_3 -- - sympy=1.13.3=pyh2585a3b_104 -+ - sympow=2.023.6=hc13a52f_4 -+ - sympy=1.13.3=pyh2585a3b_105 - - tachyon=0.99b6=hb8a568e_1002 - - tapi=1300.6.5=h03f4b80_0 - - tk=8.6.13=h5083fa2_1 -@@ -276,9 +277,9 @@ dependencies: - - tornado=6.4.2=py311h917b07b_0 - - traitlets=5.14.3=pyhd8ed1ab_1 - - typing_extensions=4.12.2=pyha770c72_1 -- - tzdata=2024b=hc8b5060_0 -- - unicodedata2=15.1.0=py311hae2e1ce_1 -- - urllib3=2.2.3=pyhd8ed1ab_1 -+ - tzdata=2025a=h78e105d_0 -+ - unicodedata2=16.0.0=py311h917b07b_0 -+ - urllib3=2.3.0=pyhd8ed1ab_0 - - wcwidth=0.2.13=pyhd8ed1ab_1 - - wheel=0.45.1=pyhd8ed1ab_1 - - widgetsnbextension=4.0.13=pyhd8ed1ab_1 -diff --git a/environment-3.12-linux-aarch64.yml b/environment-3.12-linux-aarch64.yml -index b97f90268d1..2446ad05b1c 100644 ---- a/environment-3.12-linux-aarch64.yml -+++ b/environment-3.12-linux-aarch64.yml -@@ -1,7 +1,7 @@ - name: sage-dev - # Generated by conda-lock. - # platform: linux-aarch64 --# input_hash: 28dba81f3f7cbaa4e6f35a34c9679049f47c3d73414a0a80eda04a53603e8a12 -+# input_hash: 7a6a0ff484e658c4a62a4eaf83b31a521a92aa6e6681138a6c141b28e7fa0c44 - - channels: - - conda-forge -@@ -9,12 +9,12 @@ dependencies: - - _openmp_mutex=4.5=2_kmp_llvm - - alabaster=1.0.0=pyhd8ed1ab_1 - - alsa-lib=1.2.13=h86ecc28_0 -- - arpack=3.9.1=nompi_hd363cd0_101 -+ - arpack=3.9.1=nompi_h6fc4d3a_102 - - asttokens=3.0.0=pyhd8ed1ab_1 - - autoconf=2.71=pl5321h2148fe1_1 - - automake=1.17=pl5321h8af1aa0_0 - - babel=2.16.0=pyhd8ed1ab_1 -- - bdw-gc=8.0.6=hd62202e_0 -+ - bdw-gc=8.2.8=h5ad3122_1 - - beautifulsoup4=4.12.3=pyha770c72_1 - - binutils=2.43=hf1166c9_2 - - binutils_impl_linux-aarch64=2.43=h4c662bb_2 -@@ -28,33 +28,33 @@ dependencies: - - brotli-python=1.1.0=py312h6f74592_2 - - bzip2=1.0.8=h68df207_7 - - c-ares=1.34.4=h86ecc28_0 -- - c-compiler=1.8.0=h6561dab_1 -+ - c-compiler=1.9.0=h6561dab_0 - - ca-certificates=2024.12.14=hcefe29a_0 - - cairo=1.18.2=h83712da_1 - - cddlib=1!0.94m=h719063d_0 - - certifi=2024.12.14=pyhd8ed1ab_0 - - cffi=1.17.1=py312hac81daf_0 -- - charset-normalizer=3.4.0=pyhd8ed1ab_1 -+ - charset-normalizer=3.4.1=pyhd8ed1ab_0 - - cliquer=1.22=h31becfc_1 - - colorama=0.4.6=pyhd8ed1ab_1 - - comm=0.2.2=pyhd8ed1ab_1 - - contourpy=1.3.1=py312h451a7dd_0 - - conway-polynomials=0.10=pyhd8ed1ab_0 -- - coverage=7.6.9=py312h74ce7d3_0 -+ - coverage=7.6.10=py312h74ce7d3_0 - - cpython=3.12.8=py312hd8ed1ab_1 -- - cxx-compiler=1.8.0=heb6c788_1 -+ - cxx-compiler=1.9.0=heb6c788_0 - - cycler=0.12.1=pyhd8ed1ab_1 -- - cypari2=2.1.5=py312h7f7bc3d_0 -+ - cypari2=2.2.1=py312hb80cc37_0 - - cyrus-sasl=2.1.27=hf6b2984_7 -- - cysignals=1.11.2=py312haf3d6d2_3 -+ - cysignals=1.12.3=py312h6f74592_0 - - cython=3.0.11=py312hdfe4e29_3 - - dbus=1.13.6=h12b9eeb_3 -- - debugpy=1.8.11=py312h6f74592_0 -+ - debugpy=1.8.12=py312h6f74592_0 - - decorator=5.1.1=pyhd8ed1ab_1 - - docutils=0.21.2=pyhd8ed1ab_1 - - double-conversion=3.3.0=h2f0025b_0 - - ecl=24.5.10=h5567cc5_0 -- - eclib=20231212=h154513d_1 -+ - eclib=20231212=h4705ef2_2 - - ecm=7.0.5=ha2d0fc4_0 - - exceptiongroup=1.2.2=pyhd8ed1ab_1 - - execnet=2.1.1=pyhd8ed1ab_1 -@@ -68,14 +68,14 @@ dependencies: - - fontconfig=2.15.0=h8dda3cd_1 - - fonts-conda-ecosystem=1=0 - - fonts-conda-forge=1=0 -- - fonttools=4.55.3=py312hcc812fe_0 -- - fortran-compiler=1.8.0=h25a59a9_1 -- - fplll=5.4.5=hb3a790e_0 -- - fpylll=0.6.1=py312h8b93be1_0 -+ - fonttools=4.55.6=py312hcc812fe_0 -+ - fortran-compiler=1.9.0=h25a59a9_0 -+ - fplll=5.5.0=h45c7457_0 -+ - fpylll=0.6.2=py312h37c3976_0 - - freetype=2.12.1=hf0a5ef3_2 -- - furo=2024.8.6=pyhd8ed1ab_1 -- - gap-core=4.14.0=h1754e88_1 -- - gap-defaults=4.14.0=h8af1aa0_1 -+ - furo=2024.8.6=pyhd8ed1ab_2 -+ - gap-core=4.14.0=h1754e88_2 -+ - gap-defaults=4.14.0=h8af1aa0_2 - - gcc=13.3.0=h8a56e6e_1 - - gcc_impl_linux-aarch64=13.3.0=hcdea9b6_1 - - gcc_linux-aarch64=13.3.0=h1cd514b_7 -@@ -84,7 +84,7 @@ dependencies: - - gfortran=13.3.0=h8a56e6e_1 - - gfortran_impl_linux-aarch64=13.3.0=h174a3c4_1 - - gfortran_linux-aarch64=13.3.0=h2809cf8_7 -- - giac=1.9.0.21=h04922a4_1 -+ - giac=1.9.0.21=h6e4ddb9_2 - - givaro=4.2.0=h364d21b_0 - - glpk=5.0=h66325d0_0 - - gmp=6.3.0=h0a1ffab_2 -@@ -95,29 +95,29 @@ dependencies: - - gxx_impl_linux-aarch64=13.3.0=h1211b58_1 - - gxx_linux-aarch64=13.3.0=h2864abd_7 - - h2=4.1.0=pyhd8ed1ab_1 -- - harfbuzz=9.0.0=hbf49d6b_1 -- - hpack=4.0.0=pyhd8ed1ab_1 -- - hyperframe=6.0.1=pyhd8ed1ab_1 -+ - harfbuzz=10.2.0=h785c1aa_0 -+ - hpack=4.1.0=pyhd8ed1ab_0 -+ - hyperframe=6.1.0=pyhd8ed1ab_0 - - icu=75.1=hf9b3779_0 - - idna=3.10=pyhd8ed1ab_1 - - igraph=0.10.15=h207f3e5_1 - - imagesize=1.4.1=pyhd8ed1ab_0 - - iml=1.0.5=h15043fe_1004 -- - importlib-metadata=8.5.0=pyha770c72_1 -+ - importlib-metadata=8.6.1=pyha770c72_0 - - iniconfig=2.0.0=pyhd8ed1ab_1 - - ipykernel=6.29.5=pyh3099207_0 -- - ipython=8.30.0=pyh707e725_0 -+ - ipython=8.31.0=pyh707e725_0 - - ipywidgets=8.1.5=pyhd8ed1ab_1 - - jedi=0.19.2=pyhd8ed1ab_1 -- - jinja2=3.1.4=pyhd8ed1ab_1 -+ - jinja2=3.1.5=pyhd8ed1ab_0 - - jupyter_client=8.6.3=pyhd8ed1ab_1 - - jupyter_core=5.7.2=pyh31011fe_1 - - jupyterlab_widgets=3.0.13=pyhd8ed1ab_1 - - kernel-headers_linux-aarch64=4.18.0=h05a177a_18 - - keyutils=1.6.1=h4e544f5_0 -- - kiwisolver=1.4.7=py312h88dc405_0 -+ - kiwisolver=1.4.8=py312h17cf362_0 - - krb5=1.21.3=h50a48e9_0 -- - lcalc=2.0.5=he588f68_2 -+ - lcalc=2.0.5=h30a6b3d_3 - - lcms2=2.16=h922389a_0 - - ld_impl_linux-aarch64=2.43=h80caac9_2 - - lerc=4.0.0=h4de3ea5_0 -@@ -131,27 +131,27 @@ dependencies: - - libbrotlidec=1.1.0=h86ecc28_2 - - libbrotlienc=1.1.0=h86ecc28_2 - - libcblas=3.9.0=26_linuxaarch64_openblas -- - libclang-cpp19.1=19.1.6=default_he324ac1_0 -- - libclang13=19.1.6=default_h4390ef5_0 -+ - libclang-cpp19.1=19.1.7=default_he324ac1_0 -+ - libclang13=19.1.7=default_h4390ef5_0 - - libcups=2.3.3=h405e4a8_4 - - libcurl=8.11.1=h6702fde_0 - - libdeflate=1.23=h5e3c512_0 - - libdrm=2.4.124=h86ecc28_0 -- - libedit=3.1.20191231=he28a2e2_2 -+ - libedit=3.1.20240808=pl5321h976ea20_0 - - libegl=1.7.0=hd24410f_2 - - libev=4.33=h31becfc_2 - - libexpat=2.6.4=h5ad3122_0 - - libffi=3.4.2=h3557bc0_5 -- - libflint=3.1.2=h0433c20_101 -+ - libflint=3.1.3.1=hf9b8075_101 - - libgcc=14.2.0=he277a41_1 - - libgcc-devel_linux-aarch64=13.3.0=h0c07274_101 - - libgcc-ng=14.2.0=he9431aa_1 -- - libgd=2.3.3=h6818b27_10 -+ - libgd=2.3.3=hc8d7b1d_11 - - libgfortran=14.2.0=he9431aa_1 - - libgfortran-ng=14.2.0=he9431aa_1 - - libgfortran5=14.2.0=hb6113d0_1 - - libgl=1.7.0=hd24410f_2 -- - libglib=2.82.2=hc486b8e_0 -+ - libglib=2.82.2=hc486b8e_1 - - libglvnd=1.7.0=hd24410f_2 - - libglx=1.7.0=hd24410f_2 - - libgomp=14.2.0=he277a41_1 -@@ -160,7 +160,7 @@ dependencies: - - libjpeg-turbo=3.0.0=h31becfc_1 - - liblapack=3.9.0=26_linuxaarch64_openblas - - liblapacke=3.9.0=26_linuxaarch64_openblas -- - libllvm19=19.1.6=h2edbd07_0 -+ - libllvm19=19.1.7=h2edbd07_0 - - liblzma=5.6.3=h86ecc28_1 - - liblzma-devel=5.6.3=h86ecc28_1 - - libnghttp2=1.64.0=hc8609a4_0 -@@ -169,18 +169,18 @@ dependencies: - - libopenblas=0.3.28=pthreads_h9d3fd7e_1 - - libopengl=1.7.0=hd24410f_2 - - libpciaccess=0.18=h31becfc_0 -- - libpng=1.6.44=hc4a20ef_0 -+ - libpng=1.6.45=hec79eb8_0 - - libpq=17.2=hd56632b_1 - - libsanitizer=13.3.0=ha58e236_1 - - libsodium=1.0.20=h68df207_0 -- - libsqlite=3.47.2=h5eb1b54_0 -+ - libsqlite=3.48.0=h5eb1b54_1 - - libssh2=1.11.1=ha41c0db_0 - - libstdcxx=14.2.0=h3f4de04_1 - - libstdcxx-devel_linux-aarch64=13.3.0=h0c07274_101 - - libstdcxx-ng=14.2.0=hf1166c9_1 - - libtiff=4.7.0=h88f7998_3 - - libuuid=2.38.1=hb4cce97_0 -- - libwebp-base=1.4.0=h31becfc_0 -+ - libwebp-base=1.5.0=h0886dbf_0 - - libxcb=1.17.0=h262b8f6_0 - - libxcrypt=4.4.36=h31becfc_1 - - libxkbcommon=1.7.0=h46f2afe_1 -@@ -188,7 +188,7 @@ dependencies: - - libxslt=1.1.39=h1cc9640_0 - - libzlib=1.3.1=h86ecc28_2 - - linbox=1.7.0=hf74d613_1 -- - llvm-openmp=19.1.6=h013ceaa_0 -+ - llvm-openmp=19.1.7=h013ceaa_0 - - lrcalc=2.1=h5ad3122_7 - - m4=1.4.18=h516909a_1001 - - m4ri=20140914=hedfd65a_1006 -@@ -206,22 +206,22 @@ dependencies: - - mpfr=4.2.1=h2305555_3 - - mpmath=1.3.0=pyhd8ed1ab_1 - - munkres=1.1.4=pyh9f0ad1d_0 -- - mysql-common=9.0.1=h3f5c77f_3 -- - mysql-libs=9.0.1=h11569fd_3 -+ - mysql-common=9.0.1=h3f5c77f_4 -+ - mysql-libs=9.0.1=h11569fd_4 - - nauty=2.8.8=h31becfc_1 -- - ncurses=6.5=hcccb83c_1 -+ - ncurses=6.5=ha32ae93_2 - - nest-asyncio=1.6.0=pyhd8ed1ab_1 - - networkx=3.4.2=pyh267e887_2 - - ninja=1.12.1=h70be974_0 - - ntl=11.4.3=h0d7519b_1 -- - numpy=1.26.4=py312h470d778_0 -+ - numpy=2.2.2=py312hce01fe4_0 - - openblas=0.3.28=pthreads_h3a8cbd8_1 - - openjpeg=2.5.3=h3f56577_0 - - openldap=2.6.9=h30c48ee_0 -- - openssl=3.4.0=h86ecc28_0 -+ - openssl=3.4.0=hd08dc88_1 - - packaging=24.2=pyhd8ed1ab_2 - - palp=2.20=hb9de7d4_0 -- - pari=2.15.5=h169c2a7_2_pthread -+ - pari=2.17.1=h45cace7_2_pthread - - pari-elldata=0.0.20161017=0 - - pari-galdata=0.0.20180411=0 - - pari-seadata=0.0.20090618=0 -@@ -231,7 +231,7 @@ dependencies: - - perl=5.32.1=7_h31becfc_perl5 - - pexpect=4.9.0=pyhd8ed1ab_1 - - pickleshare=0.7.5=pyhd8ed1ab_1004 -- - pillow=11.0.0=py312h5ab5af3_0 -+ - pillow=11.1.0=py312h719f0cf_0 - - pip=24.3.1=pyh8b19718_2 - - pixman=0.44.2=h86a87f0_0 - - pkg-config=0.29.2=hce167ba_1009 -@@ -240,18 +240,18 @@ dependencies: - - platformdirs=4.3.6=pyhd8ed1ab_1 - - pluggy=1.5.0=pyhd8ed1ab_1 - - ppl=1.2=h984aac9_1006 -- - pplpy=0.8.9=py312hbd99ab9_1 -- - primecount=7.9=hd600fc2_0 -- - primecountpy=0.1.0=py312h8f0b210_4 -- - primesieve=11.1=h2f0025b_0 -- - prompt-toolkit=3.0.48=pyha770c72_1 -- - psutil=6.1.0=py312hb2c0f52_0 -+ - pplpy=0.8.9=py312h372cae2_2 -+ - primecount=7.14=hfe4b40e_0 -+ - primecountpy=0.1.0=py312h451a7dd_5 -+ - primesieve=12.4=h0a1ffab_0 -+ - prompt-toolkit=3.0.50=pyha770c72_0 -+ - psutil=6.1.1=py312hb2c0f52_0 - - pthread-stubs=0.4=h86ecc28_1002 - - ptyprocess=0.7.0=pyhd8ed1ab_1 - - pure_eval=0.2.3=pyhd8ed1ab_1 - - pycparser=2.22=pyh29332c3_1 -- - pygments=2.18.0=pyhd8ed1ab_1 -- - pyparsing=3.2.0=pyhd8ed1ab_2 -+ - pygments=2.19.1=pyhd8ed1ab_0 -+ - pyparsing=3.2.1=pyhd8ed1ab_0 - - pyproject-metadata=0.9.0=pyhd8ed1ab_1 - - pyside6=6.8.1=py312hdd999d0_0 - - pysocks=1.7.1=pyha55dd90_7 -@@ -265,43 +265,43 @@ dependencies: - - pyzmq=26.2.0=py312h2427ae1_3 - - qd=2.3.22=h05efe27_1004 - - qhull=2020.2=h70be974_5 -- - qt6-main=6.8.1=h0d3cc05_0 -+ - qt6-main=6.8.1=ha0a94ed_2 - - readline=8.2=h8fc344f_1 - - requests=2.32.3=pyhd8ed1ab_1 - - rw=0.9=h31becfc_2 - - sagemath-db-elliptic-curves=0.8.1=hecc5488_0 - - sagemath-db-graphs=20210214=hd8ed1ab_0 - - sagemath-db-polytopes=20170220=1 -- - scipy=1.14.1=py312hcbff3fa_2 -- - setuptools=75.6.0=pyhff2d567_1 -+ - scipy=1.15.1=py312h9941453_0 -+ - setuptools=75.8.0=pyhff2d567_0 - - singular=4.4.0=hee12f27_1 - - six=1.17.0=pyhd8ed1ab_0 - - snowballstemmer=2.2.0=pyhd8ed1ab_0 - - soupsieve=2.5=pyhd8ed1ab_1 - - sphinx=8.1.3=pyhd8ed1ab_1 -- - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_2 -- - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_0 -+ - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_3 -+ - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_1 - - sphinxcontrib-applehelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-devhelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-htmlhelp=2.1.0=pyhd8ed1ab_1 - - sphinxcontrib-jsmath=1.0.1=pyhd8ed1ab_1 - - sphinxcontrib-qthelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-serializinghtml=1.1.10=pyhd8ed1ab_1 -- - sqlite=3.47.2=h578a6b9_0 -+ - sqlite=3.48.0=h578a6b9_1 - - stack_data=0.6.3=pyhd8ed1ab_1 - - symmetrica=3.0.1=hd600fc2_0 -- - sympow=2.023.6=h157afb5_3 -- - sympy=1.13.3=pyh2585a3b_104 -- - sysroot_linux-aarch64=2.17=h5b4a56d_18 -+ - sympow=2.023.6=h4d450c3_4 -+ - sympy=1.13.3=pyh2585a3b_105 -+ - sysroot_linux-aarch64=2.17=h68829e0_18 - - tachyon=0.99b6=ha0bfc61_1002 - - tk=8.6.13=h194ca79_0 - - tomli=2.2.1=pyhd8ed1ab_1 - - tornado=6.4.2=py312h52516f5_0 - - traitlets=5.14.3=pyhd8ed1ab_1 - - typing_extensions=4.12.2=pyha770c72_1 -- - tzdata=2024b=hc8b5060_0 -- - unicodedata2=15.1.0=py312hb2c0f52_1 -- - urllib3=2.2.3=pyhd8ed1ab_1 -+ - tzdata=2025a=h78e105d_0 -+ - unicodedata2=16.0.0=py312hb2c0f52_0 -+ - urllib3=2.3.0=pyhd8ed1ab_0 - - wayland=1.23.1=h698ed42_0 - - wcwidth=0.2.13=pyhd8ed1ab_1 - - wheel=0.45.1=pyhd8ed1ab_1 -diff --git a/environment-3.12-linux.yml b/environment-3.12-linux.yml -index 7b2496e151e..f6deedb5a15 100644 ---- a/environment-3.12-linux.yml -+++ b/environment-3.12-linux.yml -@@ -1,7 +1,7 @@ - name: sage-dev - # Generated by conda-lock. - # platform: linux-64 --# input_hash: 40be535db1c7eaa6a4654bde814ad7958eb5c8b150e3158a6897927158b3bd6f -+# input_hash: ab81a8abe5ec503808a2489bef4941922b01008bd685fc411d26594a68155fbd - - channels: - - conda-forge -@@ -10,12 +10,12 @@ dependencies: - - _openmp_mutex=4.5=2_kmp_llvm - - alabaster=1.0.0=pyhd8ed1ab_1 - - alsa-lib=1.2.13=hb9d3cd8_0 -- - arpack=3.9.1=nompi_h77f6705_101 -+ - arpack=3.9.1=nompi_hf03ea27_102 - - asttokens=3.0.0=pyhd8ed1ab_1 - - autoconf=2.71=pl5321h2b4cb7a_1 - - automake=1.17=pl5321ha770c72_0 - - babel=2.16.0=pyhd8ed1ab_1 -- - bdw-gc=8.0.6=h4bd325d_0 -+ - bdw-gc=8.2.8=h5888daf_1 - - beautifulsoup4=4.12.3=pyha770c72_1 - - binutils=2.43=h4852527_2 - - binutils_impl_linux-64=2.43=h4bf12b8_2 -@@ -29,33 +29,33 @@ dependencies: - - brotli-python=1.1.0=py312h2ec8cdc_2 - - bzip2=1.0.8=h4bc722e_7 - - c-ares=1.34.4=hb9d3cd8_0 -- - c-compiler=1.8.0=h2b85faf_1 -+ - c-compiler=1.9.0=h2b85faf_0 - - ca-certificates=2024.12.14=hbcca054_0 - - cairo=1.18.2=h3394656_1 - - cddlib=1!0.94m=h9202a9a_0 - - certifi=2024.12.14=pyhd8ed1ab_0 - - cffi=1.17.1=py312h06ac9bb_0 -- - charset-normalizer=3.4.0=pyhd8ed1ab_1 -+ - charset-normalizer=3.4.1=pyhd8ed1ab_0 - - cliquer=1.22=hd590300_1 - - colorama=0.4.6=pyhd8ed1ab_1 - - comm=0.2.2=pyhd8ed1ab_1 - - contourpy=1.3.1=py312h68727a3_0 - - conway-polynomials=0.10=pyhd8ed1ab_0 -- - coverage=7.6.9=py312h178313f_0 -+ - coverage=7.6.10=py312h178313f_0 - - cpython=3.12.8=py312hd8ed1ab_1 -- - cxx-compiler=1.8.0=h1a2810e_1 -+ - cxx-compiler=1.9.0=h1a2810e_0 - - cycler=0.12.1=pyhd8ed1ab_1 -- - cypari2=2.1.5=py312h597db99_0 -+ - cypari2=2.2.1=py312hb7bab4f_0 - - cyrus-sasl=2.1.27=h54b06d7_7 -- - cysignals=1.11.2=py312h9d3d55b_3 -+ - cysignals=1.12.3=py312h2ec8cdc_0 - - cython=3.0.11=py312h8fd2918_3 - - dbus=1.13.6=h5008d03_3 -- - debugpy=1.8.11=py312h2ec8cdc_0 -+ - debugpy=1.8.12=py312h2ec8cdc_0 - - decorator=5.1.1=pyhd8ed1ab_1 - - docutils=0.21.2=pyhd8ed1ab_1 - - double-conversion=3.3.0=h59595ed_0 - - ecl=24.5.10=h0f3afd4_0 -- - eclib=20231212=h43e5eba_1 -+ - eclib=20231212=h75fb491_2 - - ecm=7.0.5=h9458935_0 - - exceptiongroup=1.2.2=pyhd8ed1ab_1 - - execnet=2.1.1=pyhd8ed1ab_1 -@@ -69,14 +69,14 @@ dependencies: - - fontconfig=2.15.0=h7e30c49_1 - - fonts-conda-ecosystem=1=0 - - fonts-conda-forge=1=0 -- - fonttools=4.55.3=py312h178313f_0 -- - fortran-compiler=1.8.0=h36df796_1 -- - fplll=5.4.5=h384768b_0 -- - fpylll=0.6.1=py312h59a3f1e_0 -+ - fonttools=4.55.6=py312h178313f_0 -+ - fortran-compiler=1.9.0=h36df796_0 -+ - fplll=5.5.0=hd20a173_0 -+ - fpylll=0.6.2=py312ha4ee43a_0 - - freetype=2.12.1=h267a509_2 -- - furo=2024.8.6=pyhd8ed1ab_1 -- - gap-core=4.14.0=h3b03731_1 -- - gap-defaults=4.14.0=ha770c72_1 -+ - furo=2024.8.6=pyhd8ed1ab_2 -+ - gap-core=4.14.0=h3b03731_2 -+ - gap-defaults=4.14.0=ha770c72_2 - - gcc=13.3.0=h9576a4e_1 - - gcc_impl_linux-64=13.3.0=hfea6d02_1 - - gcc_linux-64=13.3.0=hc28eda2_7 -@@ -85,7 +85,7 @@ dependencies: - - gfortran=13.3.0=h9576a4e_1 - - gfortran_impl_linux-64=13.3.0=h10434e7_1 - - gfortran_linux-64=13.3.0=hb919d3a_7 -- - giac=1.9.0.21=h673759e_1 -+ - giac=1.9.0.21=hca478b9_2 - - givaro=4.2.0=hb789bce_0 - - glpk=5.0=h445213a_0 - - gmp=6.3.0=hac33072_2 -@@ -96,29 +96,29 @@ dependencies: - - gxx_impl_linux-64=13.3.0=hdbfa832_1 - - gxx_linux-64=13.3.0=h6834431_7 - - h2=4.1.0=pyhd8ed1ab_1 -- - harfbuzz=9.0.0=hda332d3_1 -- - hpack=4.0.0=pyhd8ed1ab_1 -- - hyperframe=6.0.1=pyhd8ed1ab_1 -+ - harfbuzz=10.2.0=h4bba637_0 -+ - hpack=4.1.0=pyhd8ed1ab_0 -+ - hyperframe=6.1.0=pyhd8ed1ab_0 - - icu=75.1=he02047a_0 - - idna=3.10=pyhd8ed1ab_1 - - igraph=0.10.15=he44f51b_1 - - imagesize=1.4.1=pyhd8ed1ab_0 - - iml=1.0.5=h623f65a_1004 -- - importlib-metadata=8.5.0=pyha770c72_1 -+ - importlib-metadata=8.6.1=pyha770c72_0 - - iniconfig=2.0.0=pyhd8ed1ab_1 - - ipykernel=6.29.5=pyh3099207_0 -- - ipython=8.30.0=pyh707e725_0 -+ - ipython=8.31.0=pyh707e725_0 - - ipywidgets=8.1.5=pyhd8ed1ab_1 - - jedi=0.19.2=pyhd8ed1ab_1 -- - jinja2=3.1.4=pyhd8ed1ab_1 -+ - jinja2=3.1.5=pyhd8ed1ab_0 - - jupyter_client=8.6.3=pyhd8ed1ab_1 - - jupyter_core=5.7.2=pyh31011fe_1 - - jupyterlab_widgets=3.0.13=pyhd8ed1ab_1 - - kernel-headers_linux-64=3.10.0=he073ed8_18 - - keyutils=1.6.1=h166bdaf_0 -- - kiwisolver=1.4.7=py312h68727a3_0 -+ - kiwisolver=1.4.8=py312h84d6215_0 - - krb5=1.21.3=h659f571_0 -- - lcalc=2.0.5=h5aac1b6_2 -+ - lcalc=2.0.5=h9cf73fc_3 - - lcms2=2.16=hb7c19ff_0 - - ld_impl_linux-64=2.43=h712a8e2_2 - - lerc=4.0.0=h27087fc_0 -@@ -132,27 +132,27 @@ dependencies: - - libbrotlidec=1.1.0=hb9d3cd8_2 - - libbrotlienc=1.1.0=hb9d3cd8_2 - - libcblas=3.9.0=26_linux64_openblas -- - libclang-cpp19.1=19.1.6=default_hb5137d0_0 -- - libclang13=19.1.6=default_h9c6a7e4_0 -+ - libclang-cpp19.1=19.1.7=default_hb5137d0_0 -+ - libclang13=19.1.7=default_h9c6a7e4_0 - - libcups=2.3.3=h4637d8d_4 - - libcurl=8.11.1=h332b0f4_0 - - libdeflate=1.23=h4ddbbb0_0 - - libdrm=2.4.124=hb9d3cd8_0 -- - libedit=3.1.20191231=he28a2e2_2 -+ - libedit=3.1.20240808=pl5321h7949ede_0 - - libegl=1.7.0=ha4b6fd6_2 - - libev=4.33=hd590300_2 - - libexpat=2.6.4=h5888daf_0 - - libffi=3.4.2=h7f98852_5 -- - libflint=3.1.2=h6fb9888_101 -+ - libflint=3.1.3.1=h0aae882_101 - - libgcc=14.2.0=h77fa898_1 - - libgcc-devel_linux-64=13.3.0=h84ea5a7_101 - - libgcc-ng=14.2.0=h69a702a_1 -- - libgd=2.3.3=hd3e95f3_10 -+ - libgd=2.3.3=h6f5c62b_11 - - libgfortran=14.2.0=h69a702a_1 - - libgfortran-ng=14.2.0=h69a702a_1 - - libgfortran5=14.2.0=hd5240d6_1 - - libgl=1.7.0=ha4b6fd6_2 -- - libglib=2.82.2=h2ff4ddf_0 -+ - libglib=2.82.2=h2ff4ddf_1 - - libglvnd=1.7.0=ha4b6fd6_2 - - libglx=1.7.0=ha4b6fd6_2 - - libgomp=14.2.0=h77fa898_1 -@@ -161,27 +161,27 @@ dependencies: - - libjpeg-turbo=3.0.0=hd590300_1 - - liblapack=3.9.0=26_linux64_openblas - - liblapacke=3.9.0=26_linux64_openblas -- - libllvm19=19.1.6=ha7bfdaf_0 -+ - libllvm19=19.1.7=ha7bfdaf_0 - - liblzma=5.6.3=hb9d3cd8_1 - - liblzma-devel=5.6.3=hb9d3cd8_1 - - libnghttp2=1.64.0=h161d5f1_0 - - libnsl=2.0.1=hd590300_0 -- - libntlm=1.4=h7f98852_1002 -+ - libntlm=1.8=hb9d3cd8_0 - - libopenblas=0.3.28=pthreads_h94d23a6_1 - - libopengl=1.7.0=ha4b6fd6_2 - - libpciaccess=0.18=hd590300_0 -- - libpng=1.6.44=hadc24fc_0 -+ - libpng=1.6.45=h943b412_0 - - libpq=17.2=h3b95a9b_1 - - libsanitizer=13.3.0=heb74ff8_1 - - libsodium=1.0.20=h4ab18f5_0 -- - libsqlite=3.47.2=hee588c1_0 -+ - libsqlite=3.48.0=hee588c1_1 - - libssh2=1.11.1=hf672d98_0 - - libstdcxx=14.2.0=hc0a3c3a_1 - - libstdcxx-devel_linux-64=13.3.0=h84ea5a7_101 - - libstdcxx-ng=14.2.0=h4852527_1 - - libtiff=4.7.0=hd9ff511_3 - - libuuid=2.38.1=h0b41bf4_0 -- - libwebp-base=1.4.0=hd590300_0 -+ - libwebp-base=1.5.0=h851e524_0 - - libxcb=1.17.0=h8a09558_0 - - libxcrypt=4.4.36=hd590300_1 - - libxkbcommon=1.7.0=h2c5496b_1 -@@ -189,7 +189,7 @@ dependencies: - - libxslt=1.1.39=h76b75d6_0 - - libzlib=1.3.1=hb9d3cd8_2 - - linbox=1.7.0=h7298d08_1 -- - llvm-openmp=19.1.6=h024ca30_0 -+ - llvm-openmp=19.1.7=h024ca30_0 - - lrcalc=2.1=h5888daf_7 - - m4=1.4.18=h516909a_1001 - - m4ri=20140914=hae5d5c5_1006 -@@ -207,22 +207,22 @@ dependencies: - - mpfr=4.2.1=h90cbb55_3 - - mpmath=1.3.0=pyhd8ed1ab_1 - - munkres=1.1.4=pyh9f0ad1d_0 -- - mysql-common=9.0.1=h266115a_3 -- - mysql-libs=9.0.1=he0572af_3 -+ - mysql-common=9.0.1=h266115a_4 -+ - mysql-libs=9.0.1=he0572af_4 - - nauty=2.8.8=hd590300_1 -- - ncurses=6.5=he02047a_1 -+ - ncurses=6.5=h2d0b736_2 - - nest-asyncio=1.6.0=pyhd8ed1ab_1 - - networkx=3.4.2=pyh267e887_2 - - ninja=1.12.1=h297d8ca_0 - - ntl=11.4.3=hef3c4d3_1 -- - numpy=1.26.4=py312heda63a1_0 -+ - numpy=2.2.2=py312h72c5963_0 - - openblas=0.3.28=pthreads_h6ec200e_1 - - openjpeg=2.5.3=h5fbd93e_0 - - openldap=2.6.9=he970967_0 -- - openssl=3.4.0=hb9d3cd8_0 -+ - openssl=3.4.0=h7b32b05_1 - - packaging=24.2=pyhd8ed1ab_2 - - palp=2.20=h36c2ea0_0 -- - pari=2.15.5=h4d4ae9b_2_pthread -+ - pari=2.17.1=ha40142e_2_pthread - - pari-elldata=0.0.20161017=0 - - pari-galdata=0.0.20180411=0 - - pari-seadata=0.0.20090618=0 -@@ -232,7 +232,7 @@ dependencies: - - perl=5.32.1=7_hd590300_perl5 - - pexpect=4.9.0=pyhd8ed1ab_1 - - pickleshare=0.7.5=pyhd8ed1ab_1004 -- - pillow=11.0.0=py312h7b63e92_0 -+ - pillow=11.1.0=py312h80c1187_0 - - pip=24.3.1=pyh8b19718_2 - - pixman=0.44.2=h29eaf8c_0 - - pkg-config=0.29.2=h4bc722e_1009 -@@ -241,18 +241,18 @@ dependencies: - - platformdirs=4.3.6=pyhd8ed1ab_1 - - pluggy=1.5.0=pyhd8ed1ab_1 - - ppl=1.2=h6ec01c2_1006 -- - pplpy=0.8.9=py312h12a6c6f_1 -- - primecount=7.9=hcb278e6_0 -- - primecountpy=0.1.0=py312h8572e83_4 -- - primesieve=11.1=h59595ed_0 -- - prompt-toolkit=3.0.48=pyha770c72_1 -- - psutil=6.1.0=py312h66e93f0_0 -+ - pplpy=0.8.9=py312h7383a07_2 -+ - primecount=7.14=h530483c_0 -+ - primecountpy=0.1.0=py312h68727a3_5 -+ - primesieve=12.4=he02047a_0 -+ - prompt-toolkit=3.0.50=pyha770c72_0 -+ - psutil=6.1.1=py312h66e93f0_0 - - pthread-stubs=0.4=hb9d3cd8_1002 - - ptyprocess=0.7.0=pyhd8ed1ab_1 - - pure_eval=0.2.3=pyhd8ed1ab_1 - - pycparser=2.22=pyh29332c3_1 -- - pygments=2.18.0=pyhd8ed1ab_1 -- - pyparsing=3.2.0=pyhd8ed1ab_2 -+ - pygments=2.19.1=pyhd8ed1ab_0 -+ - pyparsing=3.2.1=pyhd8ed1ab_0 - - pyproject-metadata=0.9.0=pyhd8ed1ab_1 - - pyside6=6.8.1=py312h91f0f75_0 - - pysocks=1.7.1=pyha55dd90_7 -@@ -266,43 +266,43 @@ dependencies: - - pyzmq=26.2.0=py312hbf22597_3 - - qd=2.3.22=h2cc385e_1004 - - qhull=2020.2=h434a139_5 -- - qt6-main=6.8.1=h9d28a51_0 -+ - qt6-main=6.8.1=h588cce1_2 - - readline=8.2=h8228510_1 - - requests=2.32.3=pyhd8ed1ab_1 - - rw=0.9=hd590300_2 - - sagemath-db-elliptic-curves=0.8.1=hecc5488_0 - - sagemath-db-graphs=20210214=hd8ed1ab_0 - - sagemath-db-polytopes=20170220=1 -- - scipy=1.14.1=py312h62794b6_2 -- - setuptools=75.6.0=pyhff2d567_1 -+ - scipy=1.15.1=py312h180e4f1_0 -+ - setuptools=75.8.0=pyhff2d567_0 - - singular=4.4.0=hc910cb2_1 - - six=1.17.0=pyhd8ed1ab_0 - - snowballstemmer=2.2.0=pyhd8ed1ab_0 - - soupsieve=2.5=pyhd8ed1ab_1 - - sphinx=8.1.3=pyhd8ed1ab_1 -- - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_2 -- - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_0 -+ - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_3 -+ - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_1 - - sphinxcontrib-applehelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-devhelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-htmlhelp=2.1.0=pyhd8ed1ab_1 - - sphinxcontrib-jsmath=1.0.1=pyhd8ed1ab_1 - - sphinxcontrib-qthelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-serializinghtml=1.1.10=pyhd8ed1ab_1 -- - sqlite=3.47.2=h9eae976_0 -+ - sqlite=3.48.0=h9eae976_1 - - stack_data=0.6.3=pyhd8ed1ab_1 - - symmetrica=3.0.1=hcb278e6_0 -- - sympow=2.023.6=hc6ab17c_3 -- - sympy=1.13.3=pyh2585a3b_104 -- - sysroot_linux-64=2.17=h4a8ded7_18 -+ - sympow=2.023.6=h3028977_4 -+ - sympy=1.13.3=pyh2585a3b_105 -+ - sysroot_linux-64=2.17=h0157908_18 - - tachyon=0.99b6=hba7d16a_1002 - - tk=8.6.13=noxft_h4845f30_101 - - tomli=2.2.1=pyhd8ed1ab_1 - - tornado=6.4.2=py312h66e93f0_0 - - traitlets=5.14.3=pyhd8ed1ab_1 - - typing_extensions=4.12.2=pyha770c72_1 -- - tzdata=2024b=hc8b5060_0 -- - unicodedata2=15.1.0=py312h66e93f0_1 -- - urllib3=2.2.3=pyhd8ed1ab_1 -+ - tzdata=2025a=h78e105d_0 -+ - unicodedata2=16.0.0=py312h66e93f0_0 -+ - urllib3=2.3.0=pyhd8ed1ab_0 - - wayland=1.23.1=h3e06ad9_0 - - wcwidth=0.2.13=pyhd8ed1ab_1 - - wheel=0.45.1=pyhd8ed1ab_1 -diff --git a/environment-3.12-macos-x86_64.yml b/environment-3.12-macos-x86_64.yml -index 4fccaefb570..94056fd6c91 100644 ---- a/environment-3.12-macos-x86_64.yml -+++ b/environment-3.12-macos-x86_64.yml -@@ -1,19 +1,19 @@ - name: sage-dev - # Generated by conda-lock. - # platform: osx-64 --# input_hash: 5888a68a5088012ad0dffd6db00812a4e3c24a060219dc73fd975f246c404337 -+# input_hash: ce921f8fe037a17f86cebd1f421ba43e586f9986be056154b1d53d3e0381dec4 - - channels: - - conda-forge - dependencies: - - alabaster=1.0.0=pyhd8ed1ab_1 - - appnope=0.1.4=pyhd8ed1ab_1 -- - arpack=3.9.1=nompi_hf81eadf_101 -+ - arpack=3.9.1=nompi_hdfe9103_102 - - asttokens=3.0.0=pyhd8ed1ab_1 - - autoconf=2.71=pl5321hed12c24_1 - - automake=1.17=pl5321h694c41f_0 - - babel=2.16.0=pyhd8ed1ab_1 -- - bdw-gc=8.0.6=h940c156_0 -+ - bdw-gc=8.2.8=h240833e_1 - - beautifulsoup4=4.12.3=pyha770c72_1 - - blas=2.126=openblas - - blas-devel=3.9.0=26_osx64_openblas -@@ -24,40 +24,40 @@ dependencies: - - brotli-python=1.1.0=py312h5861a67_2 - - bzip2=1.0.8=hfdf4475_7 - - c-ares=1.34.4=hf13058a_0 -- - c-compiler=1.8.0=hfc4bf79_1 -+ - c-compiler=1.9.0=h09a7c41_0 - - ca-certificates=2024.12.14=h8857fd0_0 -- - cctools=1010.6=h5b2de21_2 -- - cctools_osx-64=1010.6=hea4301f_2 -+ - cctools=1010.6=hd3558d4_2 -+ - cctools_osx-64=1010.6=h00edd4c_2 - - cddlib=1!0.94m=h0f52abe_0 - - certifi=2024.12.14=pyhd8ed1ab_0 - - cffi=1.17.1=py312hf857d28_0 -- - charset-normalizer=3.4.0=pyhd8ed1ab_1 -- - clang=17.0.6=default_he371ed4_7 -- - clang-17=17.0.6=default_hb173f14_7 -- - clang_impl_osx-64=17.0.6=h1af8efd_23 -- - clang_osx-64=17.0.6=h7e5c614_23 -- - clangxx=17.0.6=default_he371ed4_7 -- - clangxx_impl_osx-64=17.0.6=hc3430b7_23 -- - clangxx_osx-64=17.0.6=h7e5c614_23 -+ - charset-normalizer=3.4.1=pyhd8ed1ab_0 -+ - clang=18.1.8=default_h179603d_5 -+ - clang-18=18.1.8=default_h0c94c6a_5 -+ - clang_impl_osx-64=18.1.8=h6a44ed1_23 -+ - clang_osx-64=18.1.8=h7e5c614_23 -+ - clangxx=18.1.8=default_h179603d_5 -+ - clangxx_impl_osx-64=18.1.8=h4b7810f_23 -+ - clangxx_osx-64=18.1.8=h7e5c614_23 - - cliquer=1.22=h10d778d_1 - - colorama=0.4.6=pyhd8ed1ab_1 - - comm=0.2.2=pyhd8ed1ab_1 -- - compiler-rt=17.0.6=h1020d70_2 -- - compiler-rt_osx-64=17.0.6=hf2b8a54_2 -+ - compiler-rt=18.1.8=h1020d70_1 -+ - compiler-rt_osx-64=18.1.8=hf2b8a54_1 - - contourpy=1.3.1=py312hc47a885_0 - - conway-polynomials=0.10=pyhd8ed1ab_0 -- - coverage=7.6.9=py312h3520af0_0 -+ - coverage=7.6.10=py312h3520af0_0 - - cpython=3.12.8=py312hd8ed1ab_1 -- - cxx-compiler=1.8.0=h385f146_1 -+ - cxx-compiler=1.9.0=h20888b2_0 - - cycler=0.12.1=pyhd8ed1ab_1 -- - cypari2=2.1.5=py312h88009e3_0 -- - cysignals=1.11.2=py312h0c1623b_3 -+ - cypari2=2.2.1=py312hcedb801_0 -+ - cysignals=1.12.3=py312haafddd8_0 - - cython=3.0.11=py312h6891801_3 -- - debugpy=1.8.11=py312haafddd8_0 -+ - debugpy=1.8.12=py312haafddd8_0 - - decorator=5.1.1=pyhd8ed1ab_1 - - docutils=0.21.2=pyhd8ed1ab_1 - - ecl=24.5.10=h56bac16_0 -- - eclib=20231212=h960c116_1 -+ - eclib=20231212=ha63dd29_2 - - ecm=7.0.5=h4f6b447_0 - - exceptiongroup=1.2.2=pyhd8ed1ab_1 - - execnet=2.1.1=pyhd8ed1ab_1 -@@ -71,14 +71,14 @@ dependencies: - - fontconfig=2.15.0=h37eeddb_1 - - fonts-conda-ecosystem=1=0 - - fonts-conda-forge=1=0 -- - fonttools=4.55.3=py312h3520af0_0 -- - fortran-compiler=1.8.0=h33d1f46_1 -- - fplll=5.4.5=hb7981ad_0 -- - fpylll=0.6.1=py312ha9f3631_0 -+ - fonttools=4.55.6=py312h3520af0_0 -+ - fortran-compiler=1.9.0=h02557f8_0 -+ - fplll=5.5.0=h6ede486_0 -+ - fpylll=0.6.2=py312hfffdf69_0 - - freetype=2.12.1=h60636b9_2 -- - furo=2024.8.6=pyhd8ed1ab_1 -- - gap-core=4.14.0=hb9686a1_1 -- - gap-defaults=4.14.0=h694c41f_1 -+ - furo=2024.8.6=pyhd8ed1ab_2 -+ - gap-core=4.14.0=hb9686a1_2 -+ - gap-defaults=4.14.0=h694c41f_2 - - gettext=0.22.5=hdfe23c8_3 - - gettext-tools=0.22.5=hdfe23c8_3 - - gf2x=1.3.0=h35ac7d9_3 -@@ -86,37 +86,37 @@ dependencies: - - gfortran=13.2.0=h2c809b3_1 - - gfortran_impl_osx-64=13.2.0=h2bc304d_3 - - gfortran_osx-64=13.2.0=h18f7dce_1 -- - giac=1.9.0.21=h92f3f65_1 -+ - giac=1.9.0.21=h381f543_2 - - givaro=4.2.0=h1b3d6f7_0 - - glpk=5.0=h3cb5acd_0 - - gmp=6.3.0=hf036a51_2 - - gmpy2=2.1.5=py312h068713c_3 - - gsl=2.7=h93259b0_0 - - h2=4.1.0=pyhd8ed1ab_1 -- - hpack=4.0.0=pyhd8ed1ab_1 -- - hyperframe=6.0.1=pyhd8ed1ab_1 -+ - hpack=4.1.0=pyhd8ed1ab_0 -+ - hyperframe=6.1.0=pyhd8ed1ab_0 - - icu=75.1=h120a0e1_0 - - idna=3.10=pyhd8ed1ab_1 - - igraph=0.10.15=h5479cbe_1 - - imagesize=1.4.1=pyhd8ed1ab_0 - - iml=1.0.5=h61918c1_1004 -- - importlib-metadata=8.5.0=pyha770c72_1 -+ - importlib-metadata=8.6.1=pyha770c72_0 - - iniconfig=2.0.0=pyhd8ed1ab_1 - - ipykernel=6.29.5=pyh57ce528_0 -- - ipython=8.30.0=pyh707e725_0 -+ - ipython=8.31.0=pyh707e725_0 - - ipywidgets=8.1.5=pyhd8ed1ab_1 - - isl=0.26=imath32_h2e86a7b_101 - - jedi=0.19.2=pyhd8ed1ab_1 -- - jinja2=3.1.4=pyhd8ed1ab_1 -+ - jinja2=3.1.5=pyhd8ed1ab_0 - - jupyter_client=8.6.3=pyhd8ed1ab_1 - - jupyter_core=5.7.2=pyh31011fe_1 - - jupyterlab_widgets=3.0.13=pyhd8ed1ab_1 -- - kiwisolver=1.4.7=py312hc5c4d5f_0 -+ - kiwisolver=1.4.8=py312h9275861_0 - - krb5=1.21.3=h37d8d59_0 -- - lcalc=2.0.5=h547a6ed_2 -+ - lcalc=2.0.5=h0f747f7_3 - - lcms2=2.16=ha2f27b4_0 -- - ld64=951.9=h0a3eb4e_2 -- - ld64_osx-64=951.9=h5ffbe8e_2 -+ - ld64=951.9=h4e51db5_2 -+ - ld64_osx-64=951.9=hc8d1a19_2 - - lerc=4.0.0=hb486fe8_0 - - libasprintf=0.22.5=hdfe23c8_3 - - libasprintf-devel=0.22.5=hdfe23c8_3 -@@ -130,17 +130,17 @@ dependencies: - - libbrotlidec=1.1.0=h00291cd_2 - - libbrotlienc=1.1.0=h00291cd_2 - - libcblas=3.9.0=26_osx64_openblas -- - libclang-cpp17=17.0.6=default_hb173f14_7 -+ - libclang-cpp18.1=18.1.8=default_h0c94c6a_5 - - libcurl=8.11.1=h5dec5d8_0 -- - libcxx=19.1.6=hf95d169_1 -- - libcxx-devel=17.0.6=h8f8a49f_6 -+ - libcxx=19.1.7=hf95d169_0 -+ - libcxx-devel=18.1.8=h7c275be_7 - - libdeflate=1.23=he65b83e_0 -- - libedit=3.1.20191231=h0678c8f_2 -+ - libedit=3.1.20240808=pl5321ha958ccf_0 - - libev=4.33=h10d778d_2 - - libexpat=2.6.4=h240833e_0 - - libffi=3.4.2=h0d85af4_5 -- - libflint=3.1.2=h1d27844_101 -- - libgd=2.3.3=h2e77e4f_10 -+ - libflint=3.1.3.1=h9ab60bc_101 -+ - libgd=2.3.3=h8555400_11 - - libgettextpo=0.22.5=hdfe23c8_3 - - libgettextpo-devel=0.22.5=hdfe23c8_3 - - libgfortran=5.0.0=13_2_0_h97931a8_3 -@@ -153,23 +153,24 @@ dependencies: - - libjpeg-turbo=3.0.0=h0dc2134_1 - - liblapack=3.9.0=26_osx64_openblas - - liblapacke=3.9.0=26_osx64_openblas -- - libllvm17=17.0.6=hbedff68_1 -+ - libllvm18=18.1.8=h9ce406d_2 - - liblzma=5.6.3=hd471939_1 - - liblzma-devel=5.6.3=hd471939_1 - - libnghttp2=1.64.0=hc7306c3_0 - - libopenblas=0.3.28=openmp_hbf64a52_1 -- - libpng=1.6.44=h4b8f8c9_0 -+ - libpng=1.6.45=h3c4a55f_0 - - libsodium=1.0.20=hfdf4475_0 -- - libsqlite=3.47.2=hdb6dae5_0 -+ - libsqlite=3.48.0=hdb6dae5_1 - - libssh2=1.11.1=h3dc7d44_0 - - libtiff=4.7.0=hb77a491_3 -- - libwebp-base=1.4.0=h10d778d_0 -+ - libwebp-base=1.5.0=h6cf52b4_0 - - libxcb=1.17.0=hf1f96e2_0 - - libxml2=2.13.5=hebb159f_1 - - libzlib=1.3.1=hd23fc13_2 - - linbox=1.7.0=h9325161_1 -- - llvm-openmp=19.1.6=ha54dae1_0 -- - llvm-tools=17.0.6=hbedff68_1 -+ - llvm-openmp=19.1.7=ha54dae1_0 -+ - llvm-tools=18.1.8=h9ce406d_2 -+ - llvm-tools-18=18.1.8=h9ce406d_2 - - lrcalc=2.1=hac325c4_7 - - m4=1.4.18=haf1e3a3_1001 - - m4ri=20140914=hd82a5f3_1006 -@@ -188,18 +189,18 @@ dependencies: - - mpmath=1.3.0=pyhd8ed1ab_1 - - munkres=1.1.4=pyh9f0ad1d_0 - - nauty=2.8.8=h10d778d_1 -- - ncurses=6.5=hf036a51_1 -+ - ncurses=6.5=h0622a9a_2 - - nest-asyncio=1.6.0=pyhd8ed1ab_1 - - networkx=3.4.2=pyh267e887_2 - - ninja=1.12.1=h3c5361c_0 - - ntl=11.4.3=h0ab3c2f_1 -- - numpy=1.26.4=py312he3a82b2_0 -+ - numpy=2.2.2=py312h6693b03_0 - - openblas=0.3.28=openmp_h30af337_1 - - openjpeg=2.5.3=h7fd6d84_0 -- - openssl=3.4.0=hd471939_0 -+ - openssl=3.4.0=hc426f3f_1 - - packaging=24.2=pyhd8ed1ab_2 - - palp=2.20=hbcb3906_0 -- - pari=2.15.5=h7ba67ff_2_pthread -+ - pari=2.17.1=h1ed0f1a_2_pthread - - pari-elldata=0.0.20161017=0 - - pari-galdata=0.0.20180411=0 - - pari-seadata=0.0.20090618=0 -@@ -208,7 +209,7 @@ dependencies: - - perl=5.32.1=7_h10d778d_perl5 - - pexpect=4.9.0=pyhd8ed1ab_1 - - pickleshare=0.7.5=pyhd8ed1ab_1004 -- - pillow=11.0.0=py312h66fe14f_0 -+ - pillow=11.1.0=py312hd9f36e3_0 - - pip=24.3.1=pyh8b19718_2 - - pkg-config=0.29.2=hf7e621a_1009 - - pkgconfig=1.5.5=pyhd8ed1ab_5 -@@ -216,18 +217,18 @@ dependencies: - - platformdirs=4.3.6=pyhd8ed1ab_1 - - pluggy=1.5.0=pyhd8ed1ab_1 - - ppl=1.2=ha60d53e_1006 -- - pplpy=0.8.9=py312hb4417ad_1 -- - primecount=7.6=ha894c9a_0 -- - primecountpy=0.1.0=py312h49ebfd2_4 -- - primesieve=11.0=hf0c8a7f_0 -- - prompt-toolkit=3.0.48=pyha770c72_1 -- - psutil=6.1.0=py312h3d0f464_0 -+ - pplpy=0.8.9=py312h045e30c_2 -+ - primecount=7.14=h28dbb38_0 -+ - primecountpy=0.1.0=py312hc47a885_5 -+ - primesieve=12.4=hf036a51_0 -+ - prompt-toolkit=3.0.50=pyha770c72_0 -+ - psutil=6.1.1=py312h01d7ebd_0 - - pthread-stubs=0.4=h00291cd_1002 - - ptyprocess=0.7.0=pyhd8ed1ab_1 - - pure_eval=0.2.3=pyhd8ed1ab_1 - - pycparser=2.22=pyh29332c3_1 -- - pygments=2.18.0=pyhd8ed1ab_1 -- - pyparsing=3.2.0=pyhd8ed1ab_2 -+ - pygments=2.19.1=pyhd8ed1ab_0 -+ - pyparsing=3.2.1=pyhd8ed1ab_0 - - pyproject-metadata=0.9.0=pyhd8ed1ab_1 - - pysocks=1.7.1=pyha55dd90_7 - - pytest=8.3.4=pyhd8ed1ab_1 -@@ -246,27 +247,27 @@ dependencies: - - sagemath-db-elliptic-curves=0.8.1=hecc5488_0 - - sagemath-db-graphs=20210214=hd8ed1ab_0 - - sagemath-db-polytopes=20170220=1 -- - scipy=1.14.1=py312h3b0f538_2 -- - setuptools=75.6.0=pyhff2d567_1 -+ - scipy=1.15.1=py312hb4e66ee_0 -+ - setuptools=75.8.0=pyhff2d567_0 - - sigtool=0.1.3=h88f4db0_0 - - singular=4.4.0=h604985e_1 - - six=1.17.0=pyhd8ed1ab_0 - - snowballstemmer=2.2.0=pyhd8ed1ab_0 - - soupsieve=2.5=pyhd8ed1ab_1 - - sphinx=8.1.3=pyhd8ed1ab_1 -- - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_2 -- - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_0 -+ - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_3 -+ - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_1 - - sphinxcontrib-applehelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-devhelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-htmlhelp=2.1.0=pyhd8ed1ab_1 - - sphinxcontrib-jsmath=1.0.1=pyhd8ed1ab_1 - - sphinxcontrib-qthelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-serializinghtml=1.1.10=pyhd8ed1ab_1 -- - sqlite=3.47.2=h2e4c9dc_0 -+ - sqlite=3.48.0=h2e4c9dc_1 - - stack_data=0.6.3=pyhd8ed1ab_1 - - symmetrica=3.0.1=hf0c8a7f_0 -- - sympow=2.023.6=h115ba6a_3 -- - sympy=1.13.3=pyh2585a3b_104 -+ - sympow=2.023.6=h7305399_4 -+ - sympy=1.13.3=pyh2585a3b_105 - - tachyon=0.99b6=h3a1d103_1002 - - tapi=1300.6.5=h390ca13_0 - - tk=8.6.13=h1abcd95_1 -@@ -274,9 +275,9 @@ dependencies: - - tornado=6.4.2=py312h01d7ebd_0 - - traitlets=5.14.3=pyhd8ed1ab_1 - - typing_extensions=4.12.2=pyha770c72_1 -- - tzdata=2024b=hc8b5060_0 -- - unicodedata2=15.1.0=py312h3d0f464_1 -- - urllib3=2.2.3=pyhd8ed1ab_1 -+ - tzdata=2025a=h78e105d_0 -+ - unicodedata2=16.0.0=py312h01d7ebd_0 -+ - urllib3=2.3.0=pyhd8ed1ab_0 - - wcwidth=0.2.13=pyhd8ed1ab_1 - - wheel=0.45.1=pyhd8ed1ab_1 - - widgetsnbextension=4.0.13=pyhd8ed1ab_1 -diff --git a/environment-3.12-macos.yml b/environment-3.12-macos.yml -index 957da365df9..ae5920d5424 100644 ---- a/environment-3.12-macos.yml -+++ b/environment-3.12-macos.yml -@@ -1,19 +1,19 @@ - name: sage-dev - # Generated by conda-lock. - # platform: osx-arm64 --# input_hash: 0c152106e1e870088723e57e0bd27be66ce0a8f2488067475849ebf869659bbe -+# input_hash: 43b6f301d1166823ad72775146167ccf4e01759b32c0d0726035683651623fd9 - - channels: - - conda-forge - dependencies: - - alabaster=1.0.0=pyhd8ed1ab_1 - - appnope=0.1.4=pyhd8ed1ab_1 -- - arpack=3.9.1=nompi_h593882a_101 -+ - arpack=3.9.1=nompi_h1f29f7c_102 - - asttokens=3.0.0=pyhd8ed1ab_1 - - autoconf=2.71=pl5321hcd07c0c_1 - - automake=1.17=pl5321hce30654_0 - - babel=2.16.0=pyhd8ed1ab_1 -- - bdw-gc=8.0.6=hc021e02_0 -+ - bdw-gc=8.2.8=h286801f_1 - - beautifulsoup4=4.12.3=pyha770c72_1 - - blas=2.126=openblas - - blas-devel=3.9.0=26_osxarm64_openblas -@@ -24,40 +24,40 @@ dependencies: - - brotli-python=1.1.0=py312hde4cb15_2 - - bzip2=1.0.8=h99b78c6_7 - - c-ares=1.34.4=h5505292_0 -- - c-compiler=1.8.0=hf48404e_1 -+ - c-compiler=1.9.0=hdf49b6b_0 - - ca-certificates=2024.12.14=hf0a4a13_0 -- - cctools=1010.6=hf67d63f_2 -- - cctools_osx-arm64=1010.6=h623e0ac_2 -+ - cctools=1010.6=h4c9edd9_2 -+ - cctools_osx-arm64=1010.6=h908b477_2 - - cddlib=1!0.94m=h6d7a090_0 - - certifi=2024.12.14=pyhd8ed1ab_0 - - cffi=1.17.1=py312h0fad829_0 -- - charset-normalizer=3.4.0=pyhd8ed1ab_1 -- - clang=17.0.6=default_h360f5da_7 -- - clang-17=17.0.6=default_h146c034_7 -- - clang_impl_osx-arm64=17.0.6=he47c785_23 -- - clang_osx-arm64=17.0.6=h07b0088_23 -- - clangxx=17.0.6=default_h360f5da_7 -- - clangxx_impl_osx-arm64=17.0.6=h50f59cd_23 -- - clangxx_osx-arm64=17.0.6=h07b0088_23 -+ - charset-normalizer=3.4.1=pyhd8ed1ab_0 -+ - clang=18.1.8=default_h675cc0c_5 -+ - clang-18=18.1.8=default_h5c12605_5 -+ - clang_impl_osx-arm64=18.1.8=h2ae9ea5_23 -+ - clang_osx-arm64=18.1.8=h07b0088_23 -+ - clangxx=18.1.8=default_h675cc0c_5 -+ - clangxx_impl_osx-arm64=18.1.8=h555f467_23 -+ - clangxx_osx-arm64=18.1.8=h07b0088_23 - - cliquer=1.22=h93a5062_1 - - colorama=0.4.6=pyhd8ed1ab_1 - - comm=0.2.2=pyhd8ed1ab_1 -- - compiler-rt=17.0.6=h856b3c1_2 -- - compiler-rt_osx-arm64=17.0.6=h832e737_2 -+ - compiler-rt=18.1.8=h856b3c1_1 -+ - compiler-rt_osx-arm64=18.1.8=h832e737_1 - - contourpy=1.3.1=py312hb23fbb9_0 - - conway-polynomials=0.10=pyhd8ed1ab_0 -- - coverage=7.6.9=py312h998013c_0 -+ - coverage=7.6.10=py312h998013c_0 - - cpython=3.12.8=py312hd8ed1ab_1 -- - cxx-compiler=1.8.0=h18dbf2f_1 -+ - cxx-compiler=1.9.0=hba80287_0 - - cycler=0.12.1=pyhd8ed1ab_1 -- - cypari2=2.1.5=py312h2da97d0_0 -- - cysignals=1.11.2=py312heab4d4f_3 -+ - cypari2=2.2.1=py312he7c0534_0 -+ - cysignals=1.12.3=py312hd8f9ff3_0 - - cython=3.0.11=py312hde4cb15_2 -- - debugpy=1.8.11=py312hd8f9ff3_0 -+ - debugpy=1.8.12=py312hd8f9ff3_0 - - decorator=5.1.1=pyhd8ed1ab_1 - - docutils=0.21.2=pyhd8ed1ab_1 - - ecl=23.9.9=h1d9728a_0 -- - eclib=20231212=h3d50bd9_1 -+ - eclib=20231212=hc39b9a7_2 - - ecm=7.0.5=h41d338b_0 - - exceptiongroup=1.2.2=pyhd8ed1ab_1 - - execnet=2.1.1=pyhd8ed1ab_1 -@@ -71,14 +71,14 @@ dependencies: - - fontconfig=2.15.0=h1383a14_1 - - fonts-conda-ecosystem=1=0 - - fonts-conda-forge=1=0 -- - fonttools=4.55.3=py312h998013c_0 -- - fortran-compiler=1.8.0=hc3477c4_1 -- - fplll=5.4.5=hb7d509d_0 -- - fpylll=0.6.1=py312h381bdd1_0 -+ - fonttools=4.55.6=py312h998013c_0 -+ - fortran-compiler=1.9.0=h5692697_0 -+ - fplll=5.5.0=h2a2278a_0 -+ - fpylll=0.6.2=py312h03fe13c_0 - - freetype=2.12.1=hadb7bae_2 -- - furo=2024.8.6=pyhd8ed1ab_1 -- - gap-core=4.14.0=h25f1785_1 -- - gap-defaults=4.14.0=hce30654_1 -+ - furo=2024.8.6=pyhd8ed1ab_2 -+ - gap-core=4.14.0=h25f1785_2 -+ - gap-defaults=4.14.0=hce30654_2 - - gettext=0.22.5=h8414b35_3 - - gettext-tools=0.22.5=h8414b35_3 - - gf2x=1.3.0=hf8f8af4_3 -@@ -86,37 +86,37 @@ dependencies: - - gfortran=13.2.0=h1ca8e4b_1 - - gfortran_impl_osx-arm64=13.2.0=h252ada1_3 - - gfortran_osx-arm64=13.2.0=h57527a5_1 -- - giac=1.9.0.21=h1c96721_1 -+ - giac=1.9.0.21=h573964a_2 - - givaro=4.2.0=h018886a_0 - - glpk=5.0=h6d7a090_0 - - gmp=6.3.0=h7bae524_2 - - gmpy2=2.1.5=py312h524cf62_3 - - gsl=2.7=h6e638da_0 - - h2=4.1.0=pyhd8ed1ab_1 -- - hpack=4.0.0=pyhd8ed1ab_1 -- - hyperframe=6.0.1=pyhd8ed1ab_1 -+ - hpack=4.1.0=pyhd8ed1ab_0 -+ - hyperframe=6.1.0=pyhd8ed1ab_0 - - icu=75.1=hfee45f7_0 - - idna=3.10=pyhd8ed1ab_1 - - igraph=0.10.15=h3fe6531_1 - - imagesize=1.4.1=pyhd8ed1ab_0 - - iml=1.0.5=hd73f12c_1004 -- - importlib-metadata=8.5.0=pyha770c72_1 -+ - importlib-metadata=8.6.1=pyha770c72_0 - - iniconfig=2.0.0=pyhd8ed1ab_1 - - ipykernel=6.29.5=pyh57ce528_0 -- - ipython=8.30.0=pyh707e725_0 -+ - ipython=8.31.0=pyh707e725_0 - - ipywidgets=8.1.5=pyhd8ed1ab_1 - - isl=0.26=imath32_h347afa1_101 - - jedi=0.19.2=pyhd8ed1ab_1 -- - jinja2=3.1.4=pyhd8ed1ab_1 -+ - jinja2=3.1.5=pyhd8ed1ab_0 - - jupyter_client=8.6.3=pyhd8ed1ab_1 - - jupyter_core=5.7.2=pyh31011fe_1 - - jupyterlab_widgets=3.0.13=pyhd8ed1ab_1 -- - kiwisolver=1.4.7=py312h6142ec9_0 -+ - kiwisolver=1.4.8=py312h2c4a281_0 - - krb5=1.21.3=h237132a_0 -- - lcalc=2.0.5=h4a402bc_2 -+ - lcalc=2.0.5=hdaf6845_3 - - lcms2=2.16=ha0e7c42_0 -- - ld64=951.9=h39a299f_2 -- - ld64_osx-arm64=951.9=h3f9b568_2 -+ - ld64=951.9=h4c6efb1_2 -+ - ld64_osx-arm64=951.9=hfc0fa09_2 - - lerc=4.0.0=h9a09cb3_0 - - libasprintf=0.22.5=h8414b35_3 - - libasprintf-devel=0.22.5=h8414b35_3 -@@ -130,23 +130,23 @@ dependencies: - - libbrotlidec=1.1.0=hd74edd7_2 - - libbrotlienc=1.1.0=hd74edd7_2 - - libcblas=3.9.0=26_osxarm64_openblas -- - libclang-cpp17=17.0.6=default_h146c034_7 -+ - libclang-cpp18.1=18.1.8=default_h5c12605_5 - - libcurl=8.11.1=h73640d1_0 -- - libcxx=19.1.6=ha82da77_1 -- - libcxx-devel=17.0.6=h86353a2_6 -+ - libcxx=19.1.7=ha82da77_0 -+ - libcxx-devel=18.1.8=h6dc3340_7 - - libdeflate=1.23=hec38601_0 -- - libedit=3.1.20191231=hc8eb9b7_2 -+ - libedit=3.1.20240808=pl5321hafb1f1b_0 - - libev=4.33=h93a5062_2 - - libexpat=2.6.4=h286801f_0 - - libffi=3.4.2=h3422bc3_5 -- - libflint=3.1.2=he28cf6d_101 -- - libgd=2.3.3=hac1b3a8_10 -+ - libflint=3.1.3.1=ha3035ea_101 -+ - libgd=2.3.3=hb2c3a21_11 - - libgettextpo=0.22.5=h8414b35_3 - - libgettextpo-devel=0.22.5=h8414b35_3 - - libgfortran=5.0.0=13_2_0_hd922786_3 - - libgfortran-devel_osx-arm64=13.2.0=h5d7a38c_3 - - libgfortran5=13.2.0=hf226fd6_3 -- - libglib=2.82.2=h07bd6cf_0 -+ - libglib=2.82.2=hdff4504_1 - - libhomfly=1.02r6=h93a5062_1 - - libiconv=1.17=h0d3ecfb_2 - - libintl=0.22.5=h8414b35_3 -@@ -154,23 +154,24 @@ dependencies: - - libjpeg-turbo=3.0.0=hb547adb_1 - - liblapack=3.9.0=26_osxarm64_openblas - - liblapacke=3.9.0=26_osxarm64_openblas -- - libllvm17=17.0.6=h5090b49_2 -+ - libllvm18=18.1.8=h5090b49_2 - - liblzma=5.6.3=h39f12f2_1 - - liblzma-devel=5.6.3=h39f12f2_1 - - libnghttp2=1.64.0=h6d7220d_0 - - libopenblas=0.3.28=openmp_hf332438_1 -- - libpng=1.6.44=hc14010f_0 -+ - libpng=1.6.45=h3783ad8_0 - - libsodium=1.0.20=h99b78c6_0 -- - libsqlite=3.47.2=h3f77e49_0 -+ - libsqlite=3.48.0=h3f77e49_1 - - libssh2=1.11.1=h9cc3647_0 - - libtiff=4.7.0=h551f018_3 -- - libwebp-base=1.4.0=h93a5062_0 -+ - libwebp-base=1.5.0=h2471fea_0 - - libxcb=1.17.0=hdb1d25a_0 - - libxml2=2.13.5=h178c5d8_1 - - libzlib=1.3.1=h8359307_2 - - linbox=1.7.0=h9da6ecd_1 -- - llvm-openmp=19.1.6=hdb05f8b_0 -- - llvm-tools=17.0.6=h5090b49_2 -+ - llvm-openmp=19.1.7=hdb05f8b_0 -+ - llvm-tools=18.1.8=h5090b49_2 -+ - llvm-tools-18=18.1.8=h5090b49_2 - - lrcalc=2.1=hf9b8971_7 - - m4=1.4.18=h642e427_1001 - - m4ri=20140914=hc97c1ff_1006 -@@ -189,18 +190,18 @@ dependencies: - - mpmath=1.3.0=pyhd8ed1ab_1 - - munkres=1.1.4=pyh9f0ad1d_0 - - nauty=2.8.8=h93a5062_1 -- - ncurses=6.5=h7bae524_1 -+ - ncurses=6.5=h5e97a16_2 - - nest-asyncio=1.6.0=pyhd8ed1ab_1 - - networkx=3.4.2=pyh267e887_2 - - ninja=1.12.1=h420ef59_0 - - ntl=11.4.3=hbb3f309_1 -- - numpy=1.26.4=py312h8442bc7_0 -+ - numpy=2.2.2=py312h7c1f314_0 - - openblas=0.3.28=openmp_hea878ba_1 - - openjpeg=2.5.3=h8a3d83b_0 -- - openssl=3.4.0=h39f12f2_0 -+ - openssl=3.4.0=h81ee809_1 - - packaging=24.2=pyhd8ed1ab_2 - - palp=2.20=h27ca646_0 -- - pari=2.15.5=h4f2304c_2_pthread -+ - pari=2.17.1=h49d18c7_2_pthread - - pari-elldata=0.0.20161017=0 - - pari-galdata=0.0.20180411=0 - - pari-seadata=0.0.20090618=0 -@@ -210,7 +211,7 @@ dependencies: - - perl=5.32.1=7_h4614cfb_perl5 - - pexpect=4.9.0=pyhd8ed1ab_1 - - pickleshare=0.7.5=pyhd8ed1ab_1004 -- - pillow=11.0.0=py312haf37ca6_0 -+ - pillow=11.1.0=py312h50aef2c_0 - - pip=24.3.1=pyh8b19718_2 - - pkg-config=0.29.2=hde07d2e_1009 - - pkgconfig=1.5.5=pyhd8ed1ab_5 -@@ -218,18 +219,18 @@ dependencies: - - platformdirs=4.3.6=pyhd8ed1ab_1 - - pluggy=1.5.0=pyhd8ed1ab_1 - - ppl=1.2=h8b147cf_1006 -- - pplpy=0.8.9=py312h35b16b8_1 -- - primecount=7.6=hb6e4faa_0 -- - primecountpy=0.1.0=py312h389731b_4 -- - primesieve=11.0=hb7217d7_0 -- - prompt-toolkit=3.0.48=pyha770c72_1 -- - psutil=6.1.0=py312h0bf5046_0 -+ - pplpy=0.8.9=py312he1ec6da_2 -+ - primecount=7.14=ha84d530_0 -+ - primecountpy=0.1.0=py312hb23fbb9_5 -+ - primesieve=12.4=h00cdb27_0 -+ - prompt-toolkit=3.0.50=pyha770c72_0 -+ - psutil=6.1.1=py312hea69d52_0 - - pthread-stubs=0.4=hd74edd7_1002 - - ptyprocess=0.7.0=pyhd8ed1ab_1 - - pure_eval=0.2.3=pyhd8ed1ab_1 - - pycparser=2.22=pyh29332c3_1 -- - pygments=2.18.0=pyhd8ed1ab_1 -- - pyparsing=3.2.0=pyhd8ed1ab_2 -+ - pygments=2.19.1=pyhd8ed1ab_0 -+ - pyparsing=3.2.1=pyhd8ed1ab_0 - - pyproject-metadata=0.9.0=pyhd8ed1ab_1 - - pysocks=1.7.1=pyha55dd90_7 - - pytest=8.3.4=pyhd8ed1ab_1 -@@ -248,27 +249,27 @@ dependencies: - - sagemath-db-elliptic-curves=0.8.1=hecc5488_0 - - sagemath-db-graphs=20210214=hd8ed1ab_0 - - sagemath-db-polytopes=20170220=1 -- - scipy=1.14.1=py312h6bb24ec_2 -- - setuptools=75.6.0=pyhff2d567_1 -+ - scipy=1.15.1=py312hb7ffdcd_0 -+ - setuptools=75.8.0=pyhff2d567_0 - - sigtool=0.1.3=h44b9a77_0 - - singular=4.4.0=h5a8969a_1 - - six=1.17.0=pyhd8ed1ab_0 - - snowballstemmer=2.2.0=pyhd8ed1ab_0 - - soupsieve=2.5=pyhd8ed1ab_1 - - sphinx=8.1.3=pyhd8ed1ab_1 -- - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_2 -- - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_0 -+ - sphinx-basic-ng=1.0.0b2=pyhd8ed1ab_3 -+ - sphinx-inline-tabs=2023.4.21=pyhd8ed1ab_1 - - sphinxcontrib-applehelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-devhelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-htmlhelp=2.1.0=pyhd8ed1ab_1 - - sphinxcontrib-jsmath=1.0.1=pyhd8ed1ab_1 - - sphinxcontrib-qthelp=2.0.0=pyhd8ed1ab_1 - - sphinxcontrib-serializinghtml=1.1.10=pyhd8ed1ab_1 -- - sqlite=3.47.2=hd7222ec_0 -+ - sqlite=3.48.0=hd7222ec_1 - - stack_data=0.6.3=pyhd8ed1ab_1 - - symmetrica=3.0.1=hb7217d7_0 -- - sympow=2.023.6=hb0babe8_3 -- - sympy=1.13.3=pyh2585a3b_104 -+ - sympow=2.023.6=hc13a52f_4 -+ - sympy=1.13.3=pyh2585a3b_105 - - tachyon=0.99b6=hb8a568e_1002 - - tapi=1300.6.5=h03f4b80_0 - - tk=8.6.13=h5083fa2_1 -@@ -276,9 +277,9 @@ dependencies: - - tornado=6.4.2=py312hea69d52_0 - - traitlets=5.14.3=pyhd8ed1ab_1 - - typing_extensions=4.12.2=pyha770c72_1 -- - tzdata=2024b=hc8b5060_0 -- - unicodedata2=15.1.0=py312h0bf5046_1 -- - urllib3=2.2.3=pyhd8ed1ab_1 -+ - tzdata=2025a=h78e105d_0 -+ - unicodedata2=16.0.0=py312hea69d52_0 -+ - urllib3=2.3.0=pyhd8ed1ab_0 - - wcwidth=0.2.13=pyhd8ed1ab_1 - - wheel=0.45.1=pyhd8ed1ab_1 - - widgetsnbextension=4.0.13=pyhd8ed1ab_1 -diff --git a/pyproject.toml b/pyproject.toml -index a1febc07917..d2b3374575e 100644 ---- a/pyproject.toml -+++ b/pyproject.toml -@@ -3,7 +3,7 @@ build-backend = 'mesonpy' - # Minimum requirements for the build system to execute. - requires = [ - 'meson-python', -- 'cypari2 >=2.1.1', -+ 'cypari2 >=2.2.1', - # Exclude 1.12.0 because of https://github.com/sagemath/cysignals/issues/212 - 'cysignals >=1.11.2, != 1.12.0', - # Exclude 3.0.3 because of https://github.com/cython/cython/issues/5748 -@@ -19,7 +19,7 @@ description = "Sage: Open Source Mathematics Software: Standard Python Library" - dependencies = [ - 'six >=1.15.0', - 'conway-polynomials >=0.8', -- 'cypari2 >=2.1.1', -+ 'cypari2 >=2.2.1', - # Exclude 1.12.0 because of https://github.com/sagemath/cysignals/issues/212 - 'cysignals >=1.11.2, != 1.12.0', - 'cython >=3.0, != 3.0.3', -diff --git a/src/pyproject.toml b/src/pyproject.toml -index 4b70dc133d1..625b08afd7a 100644 ---- a/src/pyproject.toml -+++ b/src/pyproject.toml -@@ -6,7 +6,7 @@ requires = [ - 'setuptools >= 68.1.1', - # version constraint for macOS Big Sur support (see https://github.com/sagemath/sage/issues/31050) - 'wheel >=0.36.2', -- 'cypari2 >=2.1.1', -+ 'cypari2 >=2.2.1', - 'cysignals >=1.10.2', - # Exclude 3.0.3 because of https://github.com/cython/cython/issues/5748 - 'cython >=3.0, != 3.0.3, <4.0', -diff --git a/src/sage/arith/misc.py b/src/sage/arith/misc.py -index 5525fae666c..822701d6810 100644 ---- a/src/sage/arith/misc.py -+++ b/src/sage/arith/misc.py -@@ -2691,9 +2691,10 @@ def factor(n, proof=None, int_=False, algorithm='pari', verbose=0, **kwds): - - Any object which has a factor method can be factored like this:: - -- sage: K. = QuadraticField(-1) # needs sage.rings.number_field -- sage: factor(122 - 454*i) # needs sage.rings.number_field -- (-i) * (-i - 2)^3 * (i + 1)^3 * (-2*i + 3) * (i + 4) -+ sage: # needs sage.rings.number_field -+ sage: K. = QuadraticField(-1) -+ sage: f = factor(122 - 454*i); f -+ (-1) * (i - 1)^3 * (2*i - 1)^3 * (3*i + 2) * (i + 4) - - To access the data in a factorization:: - -@@ -2776,7 +2777,7 @@ def radical(n, *args, **kwds): - ArithmeticError: radical of 0 is not defined - sage: K. = QuadraticField(-1) # needs sage.rings.number_field - sage: radical(K(2)) # needs sage.rings.number_field -- i + 1 -+ i - 1 - - Tests with numpy and gmpy2 numbers:: - -@@ -3031,7 +3032,7 @@ def is_squarefree(n): - sage: is_squarefree(O(2)) - False - sage: O(2).factor() -- (-I) * (I + 1)^2 -+ (I) * (I - 1)^2 - - This method fails on domains which are not Unique Factorization Domains:: - -diff --git a/src/sage/calculus/calculus.py b/src/sage/calculus/calculus.py -index 64881aba812..cae93ef8bcd 100644 ---- a/src/sage/calculus/calculus.py -+++ b/src/sage/calculus/calculus.py -@@ -794,8 +794,7 @@ def nintegral(ex, x, a, b, - to high precision:: - - sage: gp.eval('intnum(x=17,42,exp(-x^2)*log(x))') -- '2.565728500561051474934096410 E-127' # 32-bit -- '2.5657285005610514829176211363206621657 E-127' # 64-bit -+ '2.5657285005610514829176211363206621657 E-127' - sage: old_prec = gp.set_real_precision(50) - sage: gp.eval('intnum(x=17,42,exp(-x^2)*log(x))') - '2.5657285005610514829173563961304957417746108003917 E-127' -diff --git a/src/sage/categories/quotient_fields.py b/src/sage/categories/quotient_fields.py -index 76f0570a819..0e4d13ef889 100644 ---- a/src/sage/categories/quotient_fields.py -+++ b/src/sage/categories/quotient_fields.py -@@ -100,7 +100,7 @@ def gcd(self, other): - sage: R = ZZ.extension(x^2 + 1, names='i') - sage: i = R.1 - sage: gcd(5, 3 + 4*i) -- -i - 2 -+ 2*i - 1 - sage: P. = R[] - sage: gcd(t, i) - Traceback (most recent call last): -diff --git a/src/sage/doctest/sources.py b/src/sage/doctest/sources.py -index 7589f62922b..9807c1d5e12 100644 ---- a/src/sage/doctest/sources.py -+++ b/src/sage/doctest/sources.py -@@ -766,11 +766,11 @@ def create_doctests(self, namespace): - - sage: import sys - sage: bitness = '64' if sys.maxsize > (1 << 32) else '32' -- sage: gp.get_precision() == 38 # needs sage.libs.pari -+ sage: sys.maxsize == 2^63 - 1 - False # 32-bit - True # 64-bit - sage: ex = doctests[20].examples[11] -- sage: ((bitness == '64' and ex.want == 'True \n') # needs sage.libs.pari -+ sage: ((bitness == '64' and ex.want == 'True \n') - ....: or (bitness == '32' and ex.want == 'False \n')) - True - -diff --git a/src/sage/dynamics/arithmetic_dynamics/berkovich_ds.py b/src/sage/dynamics/arithmetic_dynamics/berkovich_ds.py -index d32ce5c9435..2f7b4a6f04c 100644 ---- a/src/sage/dynamics/arithmetic_dynamics/berkovich_ds.py -+++ b/src/sage/dynamics/arithmetic_dynamics/berkovich_ds.py -@@ -691,10 +691,10 @@ def conjugate(self, M, adjugate=False, new_ideal=None): - - sage: # needs sage.rings.number_field - sage: ideal = A.ideal(5).factor()[1][0]; ideal -- Fractional ideal (2*a + 1) -+ Fractional ideal (-2*a - 1) - sage: g = f.conjugate(conj, new_ideal=ideal) - sage: g.domain().ideal() -- Fractional ideal (2*a + 1) -+ Fractional ideal (-2*a - 1) - """ - if self.domain().is_padic_base(): - return DynamicalSystem_Berkovich(self._system.conjugate(M, adjugate=adjugate)) -diff --git a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py -index 591693e5af8..fa9d808fd33 100644 ---- a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py -+++ b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py -@@ -1791,7 +1791,7 @@ def primes_of_bad_reduction(self, check=True): - sage: P. = ProjectiveSpace(K,1) - sage: f = DynamicalSystem_projective([1/3*x^2+1/a*y^2, y^2]) - sage: f.primes_of_bad_reduction() # needs sage.rings.function_field -- [Fractional ideal (a), Fractional ideal (3)] -+ [Fractional ideal (-a), Fractional ideal (3)] - - This is an example where ``check=False`` returns extra primes:: - -diff --git a/src/sage/interfaces/gp.py b/src/sage/interfaces/gp.py -index b98c050d889..712a37a6dc6 100644 ---- a/src/sage/interfaces/gp.py -+++ b/src/sage/interfaces/gp.py -@@ -48,11 +48,9 @@ - :: - - sage: gp("a = intnum(x=0,6,sin(x))") -- 0.03982971334963397945434770208 # 32-bit -- 0.039829713349633979454347702077075594548 # 64-bit -+ 0.039829713349633979454347702077075594548 - sage: gp("a") -- 0.03982971334963397945434770208 # 32-bit -- 0.039829713349633979454347702077075594548 # 64-bit -+ 0.039829713349633979454347702077075594548 - sage: gp.kill("a") - sage: gp("a") - a -@@ -375,8 +373,7 @@ def get_precision(self): - EXAMPLES:: - - sage: gp.get_precision() -- 28 # 32-bit -- 38 # 64-bit -+ 38 - """ - return self.get_default('realprecision') - -@@ -396,15 +393,13 @@ def set_precision(self, prec): - EXAMPLES:: - - sage: old_prec = gp.set_precision(53); old_prec -- 28 # 32-bit -- 38 # 64-bit -+ 38 - sage: gp.get_precision() - 57 - sage: gp.set_precision(old_prec) - 57 - sage: gp.get_precision() -- 28 # 32-bit -- 38 # 64-bit -+ 38 - """ - return self.set_default('realprecision', prec) - -@@ -520,8 +515,7 @@ def set_default(self, var, value): - sage: gp.set_default('realprecision', old_prec) - 115 - sage: gp.get_default('realprecision') -- 28 # 32-bit -- 38 # 64-bit -+ 38 - """ - old = self.get_default(var) - self._eval_line('default(%s,%s)' % (var, value)) -@@ -547,8 +541,7 @@ def get_default(self, var): - sage: gp.get_default('seriesprecision') - 16 - sage: gp.get_default('realprecision') -- 28 # 32-bit -- 38 # 64-bit -+ 38 - """ - return eval(self._eval_line('default(%s)' % var)) - -@@ -773,8 +766,7 @@ def _exponent_symbol(self): - :: - - sage: repr(gp(10.^80)).replace(gp._exponent_symbol(), 'e') -- '1.0000000000000000000000000000000000000e80' # 64-bit -- '1.000000000000000000000000000e80' # 32-bit -+ '1.0000000000000000000000000000000000000e80' - """ - return ' E' - -@@ -800,18 +792,15 @@ def new_with_bits_prec(self, s, precision=0): - - sage: # needs sage.symbolic - sage: pi_def = gp(pi); pi_def -- 3.141592653589793238462643383 # 32-bit -- 3.1415926535897932384626433832795028842 # 64-bit -+ 3.1415926535897932384626433832795028842 - sage: pi_def.precision() -- 28 # 32-bit -- 38 # 64-bit -+ 38 - sage: pi_150 = gp.new_with_bits_prec(pi, 150) - sage: new_prec = pi_150.precision(); new_prec - 48 # 32-bit - 57 # 64-bit - sage: old_prec = gp.set_precision(new_prec); old_prec -- 28 # 32-bit -- 38 # 64-bit -+ 38 - sage: pi_150 - 3.14159265358979323846264338327950288419716939938 # 32-bit - 3.14159265358979323846264338327950288419716939937510582098 # 64-bit -@@ -819,8 +808,7 @@ def new_with_bits_prec(self, s, precision=0): - 48 # 32-bit - 57 # 64-bit - sage: gp.get_precision() -- 28 # 32-bit -- 38 # 64-bit -+ 38 - """ - if precision: - old_prec = self.get_real_precision() -@@ -856,11 +844,9 @@ class GpElement(ExpectElement, sage.interfaces.abc.GpElement): - sage: loads(dumps(x)) == x - False - sage: x -- 1.047197551196597746154214461 # 32-bit -- 1.0471975511965977461542144610931676281 # 64-bit -+ 1.0471975511965977461542144610931676281 - sage: loads(dumps(x)) -- 1.047197551196597746154214461 # 32-bit -- 1.0471975511965977461542144610931676281 # 64-bit -+ 1.0471975511965977461542144610931676281 - - The two elliptic curves look the same, but internally the floating - point numbers are slightly different. -diff --git a/src/sage/interfaces/interface.py b/src/sage/interfaces/interface.py -index 22fb4b8487c..49a41772aac 100644 ---- a/src/sage/interfaces/interface.py -+++ b/src/sage/interfaces/interface.py -@@ -1045,8 +1045,7 @@ def _sage_repr(self): - :: - - sage: gp(10.^80)._sage_repr() -- '1.0000000000000000000000000000000000000e80' # 64-bit -- '1.000000000000000000000000000e80' # 32-bit -+ '1.0000000000000000000000000000000000000e80' - sage: mathematica('10.^80')._sage_repr() # optional - mathematica - '1.e80' - -diff --git a/src/sage/interfaces/mathematica.py b/src/sage/interfaces/mathematica.py -index 488a1fb1af5..fb8eebd8118 100644 ---- a/src/sage/interfaces/mathematica.py -+++ b/src/sage/interfaces/mathematica.py -@@ -187,8 +187,7 @@ - Note that this agrees with what the PARI interpreter gp produces:: - - sage: gp('solve(x=1,2,exp(x)-3*x)') -- 1.512134551657842473896739678 # 32-bit -- 1.5121345516578424738967396780720387046 # 64-bit -+ 1.5121345516578424738967396780720387046 - - Next we find the minimum of a polynomial using the two different - ways of accessing Mathematica:: -diff --git a/src/sage/interfaces/mathics.py b/src/sage/interfaces/mathics.py -index 3ca4bee83ef..6bed0895729 100644 ---- a/src/sage/interfaces/mathics.py -+++ b/src/sage/interfaces/mathics.py -@@ -196,8 +196,7 @@ - Note that this agrees with what the PARI interpreter gp produces:: - - sage: gp('solve(x=1,2,exp(x)-3*x)') -- 1.512134551657842473896739678 # 32-bit -- 1.5121345516578424738967396780720387046 # 64-bit -+ 1.5121345516578424738967396780720387046 - - Next we find the minimum of a polynomial using the two different - ways of accessing Mathics:: -diff --git a/src/sage/interfaces/maxima_abstract.py b/src/sage/interfaces/maxima_abstract.py -index b8df280857c..234e9373fca 100644 ---- a/src/sage/interfaces/maxima_abstract.py -+++ b/src/sage/interfaces/maxima_abstract.py -@@ -1489,8 +1489,7 @@ def nintegral(self, var='x', a=0, b=1, - high precision very quickly:: - - sage: gp('intnum(x=0,1,exp(-sqrt(x)))') -- 0.5284822353142307136179049194 # 32-bit -- 0.52848223531423071361790491935415653022 # 64-bit -+ 0.52848223531423071361790491935415653022 - sage: _ = gp.set_precision(80) - sage: gp('intnum(x=0,1,exp(-sqrt(x)))') - 0.52848223531423071361790491935415653021675547587292866196865279321015401702040079 -diff --git a/src/sage/libs/pari/__init__.py b/src/sage/libs/pari/__init__.py -index b5bc281db4d..2c4f8fa4b24 100644 ---- a/src/sage/libs/pari/__init__.py -+++ b/src/sage/libs/pari/__init__.py -@@ -165,12 +165,11 @@ - sage: e = pari([0,0,0,-82,0]).ellinit() - sage: eta1 = e.elleta(precision=50)[0] - sage: eta1.sage() -- 3.6054636014326520859158205642077267748 # 64-bit -- 3.605463601432652085915820564 # 32-bit -+ 3.6054636014326520859158205642077267748 - sage: eta1 = e.elleta(precision=150)[0] - sage: eta1.sage() - 3.605463601432652085915820564207726774810268996598024745444380641429820491740 # 64-bit -- 3.60546360143265208591582056420772677481026899659802474544 # 32-bit -+ 3.605463601432652085915820564207726774810268996598024745444380641430 # 32-bit - """ - - -diff --git a/src/sage/libs/pari/convert_sage.pyx b/src/sage/libs/pari/convert_sage.pyx -index e26238d7c38..48338e0279c 100644 ---- a/src/sage/libs/pari/convert_sage.pyx -+++ b/src/sage/libs/pari/convert_sage.pyx -@@ -573,17 +573,16 @@ cpdef list pari_prime_range(long c_start, long c_stop, bint py_ints=False): - sage: pari_prime_range(2, 19) - [2, 3, 5, 7, 11, 13, 17] - """ -- cdef long p = 0 -- cdef byteptr pari_prime_ptr = diffptr -+ cdef ulong i = 1 - res = [] -- while p < c_start: -- NEXT_PRIME_VIADIFF(p, pari_prime_ptr) -- while p < c_stop: -+ while pari_PRIMES[i] < c_start: -+ i+=1 -+ while pari_PRIMES[i] < c_stop: - if py_ints: -- res.append(p) -+ res.append(pari_PRIMES[i]) - else: - z = PY_NEW(Integer) -- mpz_set_ui(z.value, p) -+ mpz_set_ui(z.value, pari_PRIMES[i]) - res.append(z) -- NEXT_PRIME_VIADIFF(p, pari_prime_ptr) -+ i+=1 - return res -diff --git a/src/sage/libs/pari/convert_sage_real_mpfr.pyx b/src/sage/libs/pari/convert_sage_real_mpfr.pyx -index 98db6023dc9..5fd7fba1c47 100644 ---- a/src/sage/libs/pari/convert_sage_real_mpfr.pyx -+++ b/src/sage/libs/pari/convert_sage_real_mpfr.pyx -@@ -28,7 +28,7 @@ cpdef Gen new_gen_from_real_mpfr_element(RealNumber self): - - # We round up the precision to the nearest multiple of wordsize. - cdef int rounded_prec -- rounded_prec = (self.prec() + wordsize - 1) & ~(wordsize - 1) -+ rounded_prec = nbits2prec(self.prec()) - - # Yes, assigning to self works fine, even in Cython. - if rounded_prec > prec: -@@ -48,7 +48,7 @@ cpdef Gen new_gen_from_real_mpfr_element(RealNumber self): - exponent = mpfr_get_z_exp(mantissa, self.value) - - # Create a PARI REAL -- pari_float = cgetr(2 + rounded_prec / wordsize) -+ pari_float = cgetr(rounded_prec) - pari_float[1] = evalexpo(exponent + rounded_prec - 1) + evalsigne(mpfr_sgn(self.value)) - mpz_export(&pari_float[2], NULL, 1, wordsize // 8, 0, 0, mantissa) - mpz_clear(mantissa) -diff --git a/src/sage/libs/pari/tests.py b/src/sage/libs/pari/tests.py -index 1ed571cd4b9..38fee89202b 100644 ---- a/src/sage/libs/pari/tests.py -+++ b/src/sage/libs/pari/tests.py -@@ -94,8 +94,7 @@ - [4, 2] - - sage: int(pari(RealField(63)(2^63 - 1))) # needs sage.rings.real_mpfr -- 9223372036854775807 # 32-bit -- 9223372036854775807 # 64-bit -+ 9223372036854775807 - sage: int(pari(RealField(63)(2^63 + 2))) # needs sage.rings.real_mpfr - 9223372036854775810 - -@@ -1231,8 +1230,7 @@ - sage: e.ellheight([1,0]) - 0.476711659343740 - sage: e.ellheight([1,0], precision=128).sage() -- 0.47671165934373953737948605888465305945902294218 # 32-bit -- 0.476711659343739537379486058884653059459022942211150879336 # 64-bit -+ 0.476711659343739537379486058884653059459022942211150879336 - sage: e.ellheight([1, 0], [-1, 1]) - 0.418188984498861 - -@@ -1502,7 +1500,7 @@ - sage: pari(-104).quadclassunit() - [6, [6], [Qfb(5, -4, 6)], 1] - sage: pari(109).quadclassunit() -- [1, [], [], 5.56453508676047] -+ [1, [], [], 5.56453508676047, -1] - sage: pari(10001).quadclassunit() # random generators - [16, [16], [Qfb(10, 99, -5, 0.E-38)], 5.29834236561059] - sage: pari(10001).quadclassunit()[0] -@@ -1749,13 +1747,13 @@ - sage: y = QQ['yy'].0; _ = pari(y) # pari has variable ordering rules - sage: x = QQ['zz'].0; nf = pari(x^2 + 2).nfinit() - sage: nf.nfroots(y^2 + 2) -- [Mod(-zz, zz^2 + 2), Mod(zz, zz^2 + 2)] -+ [Mod(-zz, zz^2 + 2), Mod(zz, zz^2 + 2)]~ - sage: nf = pari(x^3 + 2).nfinit() - sage: nf.nfroots(y^3 + 2) -- [Mod(zz, zz^3 + 2)] -+ [Mod(zz, zz^3 + 2)]~ - sage: nf = pari(x^4 + 2).nfinit() - sage: nf.nfroots(y^4 + 2) -- [Mod(-zz, zz^4 + 2), Mod(zz, zz^4 + 2)] -+ [Mod(-zz, zz^4 + 2), Mod(zz, zz^4 + 2)]~ - - sage: nf = pari('x^2 + 1').nfinit() - sage: nf.nfrootsof1() -@@ -1806,12 +1804,11 @@ - sage: e = pari([0,0,0,-82,0]).ellinit() - sage: eta1 = e.elleta(precision=50)[0] - sage: eta1.sage() -- 3.6054636014326520859158205642077267748 # 64-bit -- 3.605463601432652085915820564 # 32-bit -+ 3.6054636014326520859158205642077267748 - sage: eta1 = e.elleta(precision=150)[0] - sage: eta1.sage() - 3.605463601432652085915820564207726774810268996598024745444380641429820491740 # 64-bit -- 3.60546360143265208591582056420772677481026899659802474544 # 32-bit -+ 3.605463601432652085915820564207726774810268996598024745444380641430 # 32-bit - sage: from cypari2 import Pari - sage: pari = Pari() - -diff --git a/src/sage/matrix/matrix2.pyx b/src/sage/matrix/matrix2.pyx -index 852d749e1e6..9f8a33adeb6 100644 ---- a/src/sage/matrix/matrix2.pyx -+++ b/src/sage/matrix/matrix2.pyx -@@ -16575,7 +16575,7 @@ cdef class Matrix(Matrix1): - ....: -2*a^2 + 4*a - 2, -2*a^2 + 1, 2*a, a^2 - 6, 3*a^2 - a ]) - sage: r,s,p = m._echelon_form_PID() - sage: s[2] -- (0, 0, -3*a^2 - 18*a + 34, -68*a^2 + 134*a - 53, -111*a^2 + 275*a - 90) -+ (0, 0, 3*a^2 + 18*a - 34, 68*a^2 - 134*a + 53, 111*a^2 - 275*a + 90) - sage: r * m == s and r.det() == 1 - True - -diff --git a/src/sage/modular/cusps_nf.py b/src/sage/modular/cusps_nf.py -index 2fdfc7cdc02..ef86da65c12 100644 ---- a/src/sage/modular/cusps_nf.py -+++ b/src/sage/modular/cusps_nf.py -@@ -1184,9 +1184,9 @@ def NFCusps_ideal_reps_for_levelN(N, nlists=1): - sage: from sage.modular.cusps_nf import NFCusps_ideal_reps_for_levelN - sage: NFCusps_ideal_reps_for_levelN(N) - [(Fractional ideal (1), -- Fractional ideal (67, a + 17), -- Fractional ideal (127, a + 48), -- Fractional ideal (157, a - 19))] -+ Fractional ideal (67, -4/7*a^3 + 13/7*a^2 + 39/7*a - 43), -+ Fractional ideal (127, -4/7*a^3 + 13/7*a^2 + 39/7*a - 42), -+ Fractional ideal (157, -4/7*a^3 + 13/7*a^2 + 39/7*a + 48))] - sage: L = NFCusps_ideal_reps_for_levelN(N, 5) - sage: all(len(L[i]) == k.class_number() for i in range(len(L))) - True -@@ -1244,7 +1244,7 @@ def units_mod_ideal(I): - sage: I = k.ideal(5, a + 1) - sage: units_mod_ideal(I) - [1, -- -2*a^2 - 4*a + 1, -+ 2*a^2 + 4*a - 1, - ...] - - :: -diff --git a/src/sage/modular/dirichlet.py b/src/sage/modular/dirichlet.py -index f93984335bd..ddbfa6371ba 100644 ---- a/src/sage/modular/dirichlet.py -+++ b/src/sage/modular/dirichlet.py -@@ -2394,13 +2394,13 @@ class DirichletGroupFactory(UniqueFactory): - sage: parent(val) - Gaussian Integers generated by zeta4 in Cyclotomic Field of order 4 and degree 2 - sage: r4_29_0 = r4.residue_field(K(29).factor()[0][0]); r4_29_0(val) -- 17 -+ 12 - sage: r4_29_0(val) * GF(29)(3) -- 22 -+ 7 - sage: r4_29_0(G.gens()[2].values_on_gens()[2]) * 3 -- 22 -+ 7 - sage: parent(r4_29_0(G.gens()[2].values_on_gens()[2]) * 3) -- Residue field of Fractional ideal (-2*zeta4 + 5) -+ Residue field of Fractional ideal (-2*zeta4 - 5) - - :: - -diff --git a/src/sage/modular/modsym/p1list_nf.py b/src/sage/modular/modsym/p1list_nf.py -index 86d33071974..00bb0979ea4 100644 ---- a/src/sage/modular/modsym/p1list_nf.py -+++ b/src/sage/modular/modsym/p1list_nf.py -@@ -61,7 +61,7 @@ - - sage: alpha = MSymbol(N, a + 2, 3*a^2) - sage: alpha.lift_to_sl2_Ok() -- [-1, 4*a^2 - 13*a + 23, a + 2, 5*a^2 + 3*a - 3] -+ [-a - 1, 15*a^2 - 38*a + 86, a + 2, -a^2 + 9*a - 19] - sage: Ok = k.ring_of_integers() - sage: M = Matrix(Ok, 2, alpha.lift_to_sl2_Ok()) - sage: det(M) -@@ -977,11 +977,11 @@ def apply_J_epsilon(self, i, e1, e2=1): - sage: N = k.ideal(5, a + 1) - sage: P = P1NFList(N) - sage: u = k.unit_group().gens_values(); u -- [-1, -2*a^2 - 4*a + 1] -+ [-1, 2*a^2 + 4*a - 1] - sage: P.apply_J_epsilon(4, -1) - 2 - sage: P.apply_J_epsilon(4, u[0], u[1]) -- 5 -+ 1 - - :: - -@@ -1122,7 +1122,7 @@ def lift_to_sl2_Ok(N, c, d): - sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 0, 7)) - Traceback (most recent call last): - ... -- ValueError: <0> + <7> and the Fractional ideal (7, a) are not coprime. -+ ValueError: <0> + <7> and the Fractional ideal (7, -4/7*a^3 + 13/7*a^2 + 39/7*a - 19) are not coprime. - """ - k = N.number_field() - # check the input -diff --git a/src/sage/quadratic_forms/binary_qf.py b/src/sage/quadratic_forms/binary_qf.py -index 202da0652ff..083bdee237d 100644 ---- a/src/sage/quadratic_forms/binary_qf.py -+++ b/src/sage/quadratic_forms/binary_qf.py -@@ -1646,7 +1646,7 @@ def solve_integer(self, n, *, algorithm='general', _flag=2): - sage: Q = BinaryQF([1, 0, 12345]) - sage: n = 2^99 + 5273 - sage: Q.solve_integer(n) # needs sage.libs.pari -- (-67446480057659, 7139620553488) -+ (67446480057659, 7139620553488) - sage: Q.solve_integer(n, algorithm='cornacchia') # needs sage.libs.pari - (67446480057659, 7139620553488) - sage: timeit('Q.solve_integer(n)') # not tested -@@ -1661,7 +1661,7 @@ def solve_integer(self, n, *, algorithm='general', _flag=2): - sage: Qs - [x^2 + x*y + 6*y^2, 2*x^2 - x*y + 3*y^2, 2*x^2 + x*y + 3*y^2] - sage: [Q.solve_integer(3) for Q in Qs] -- [None, (0, -1), (0, -1)] -+ [None, (0, 1), (0, 1)] - sage: [Q.solve_integer(5) for Q in Qs] - [None, None, None] - sage: [Q.solve_integer(6) for Q in Qs] -@@ -1741,11 +1741,11 @@ def solve_integer(self, n, *, algorithm='general', _flag=2): - sage: # needs sage.libs.pari - sage: Q = BinaryQF([1, 0, 5]) - sage: Q.solve_integer(126, _flag=1) -- [(11, -1), (-1, -5), (-1, 5), (-11, -1)] -+ [(-11, -1), (-1, -5), (-1, 5), (11, -1)] - sage: Q.solve_integer(126, _flag=2) - (11, -1) - sage: Q.solve_integer(126, _flag=3) -- [(11, -1), (-1, -5), (-1, 5), (-11, -1), (-9, -3), (9, -3)] -+ [(-11, -1), (-9, -3), (-1, -5), (-1, 5), (9, -3), (11, -1)] - """ - if self.is_negative_definite(): # not supported by PARI - return (-self).solve_integer(-n) -diff --git a/src/sage/rings/finite_rings/finite_field_prime_modn.py b/src/sage/rings/finite_rings/finite_field_prime_modn.py -index d94b0a4335a..0978c7328fe 100644 ---- a/src/sage/rings/finite_rings/finite_field_prime_modn.py -+++ b/src/sage/rings/finite_rings/finite_field_prime_modn.py -@@ -114,9 +114,9 @@ def _coerce_map_from_(self, S): - sage: RF13 = K.residue_field(pp) - sage: RF13.hom([GF(13)(1)]) - Ring morphism: -- From: Residue field of Fractional ideal (-w - 18) -- To: Finite Field of size 13 -- Defn: 1 |--> 1 -+ From: Residue field of Fractional ideal (w + 18) -+ To: Finite Field of size 13 -+ Defn: 1 |--> 1 - - Check that :issue:`19573` is resolved:: - -diff --git a/src/sage/rings/finite_rings/residue_field.pyx b/src/sage/rings/finite_rings/residue_field.pyx -index f6f8c08666f..5c6f41b63c5 100644 ---- a/src/sage/rings/finite_rings/residue_field.pyx -+++ b/src/sage/rings/finite_rings/residue_field.pyx -@@ -22,14 +22,13 @@ monogenic (i.e., 2 is an essential discriminant divisor):: - sage: # needs sage.rings.number_field - sage: K. = NumberField(x^3 + x^2 - 2*x + 8) - sage: F = K.factor(2); F -- (Fractional ideal (-1/2*a^2 + 1/2*a - 1)) * (Fractional ideal (-a^2 + 2*a - 3)) -- * (Fractional ideal (3/2*a^2 - 5/2*a + 4)) -+ (Fractional ideal (-1/2*a^2 + 1/2*a - 1)) * (Fractional ideal (a^2 - 2*a + 3)) * (Fractional ideal (-3/2*a^2 + 5/2*a - 4)) - sage: F[0][0].residue_field() - Residue field of Fractional ideal (-1/2*a^2 + 1/2*a - 1) - sage: F[1][0].residue_field() -- Residue field of Fractional ideal (-a^2 + 2*a - 3) -+ Residue field of Fractional ideal (a^2 - 2*a + 3) - sage: F[2][0].residue_field() -- Residue field of Fractional ideal (3/2*a^2 - 5/2*a + 4) -+ Residue field of Fractional ideal (-3/2*a^2 + 5/2*a - 4) - - We can also form residue fields from `\ZZ`:: - -@@ -126,10 +125,10 @@ First over a small non-prime field:: - sage: I = ideal([ubar*X + Y]); I - Ideal (ubar*X + Y) of Multivariate Polynomial Ring in X, Y over - Residue field in ubar of Fractional ideal -- (47, 517/55860*u^5 + 235/3724*u^4 + 9829/13965*u^3 -- + 54106/13965*u^2 + 64517/27930*u + 755696/13965) -+ (47, 4841/93100*u^5 + 34451/139650*u^4 + 303697/69825*u^3 -+ + 297893/27930*u^2 + 1649764/23275*u + 2633506/69825) - sage: I.groebner_basis() # needs sage.libs.singular -- [X + (-19*ubar^2 - 5*ubar - 17)*Y] -+ [X + (-15*ubar^2 + 3*ubar - 2)*Y] - - And now over a large prime field:: - -@@ -496,9 +495,9 @@ class ResidueField_generic(Field): - - sage: # needs sage.rings.number_field - sage: I = QQ[i].factor(2)[0][0]; I -- Fractional ideal (I + 1) -+ Fractional ideal (I - 1) - sage: k = I.residue_field(); k -- Residue field of Fractional ideal (I + 1) -+ Residue field of Fractional ideal (I - 1) - sage: type(k) - - -@@ -1008,7 +1007,7 @@ cdef class ReductionMap(Map): - sage: cr - Partially defined reduction map: - From: Number Field in a with defining polynomial x^2 + 1 -- To: Residue field of Fractional ideal (a + 1) -+ To: Residue field of Fractional ideal (a - 1) - sage: cr == r # not implemented - True - sage: r(2 + a) == cr(2 + a) -@@ -1039,7 +1038,7 @@ cdef class ReductionMap(Map): - sage: cr - Partially defined reduction map: - From: Number Field in a with defining polynomial x^2 + 1 -- To: Residue field of Fractional ideal (a + 1) -+ To: Residue field of Fractional ideal (a - 1) - sage: cr == r # not implemented - True - sage: r(2 + a) == cr(2 + a) -@@ -1071,7 +1070,7 @@ cdef class ReductionMap(Map): - sage: r = F.reduction_map(); r - Partially defined reduction map: - From: Number Field in a with defining polynomial x^2 + 1 -- To: Residue field of Fractional ideal (a + 1) -+ To: Residue field of Fractional ideal (a - 1) - - We test that calling the function also works after copying:: - -@@ -1083,7 +1082,7 @@ cdef class ReductionMap(Map): - Traceback (most recent call last): - ... - ZeroDivisionError: Cannot reduce field element 1/2*a -- modulo Fractional ideal (a + 1): it has negative valuation -+ modulo Fractional ideal (a - 1): it has negative valuation - - sage: # needs sage.rings.finite_rings - sage: R. = GF(2)[]; h = t^5 + t^2 + 1 -@@ -1105,11 +1104,11 @@ cdef class ReductionMap(Map): - sage: # needs sage.rings.number_field - sage: K. = NumberField(x^2 + 1) - sage: P1, P2 = [g[0] for g in K.factor(5)]; P1, P2 -- (Fractional ideal (-i - 2), Fractional ideal (2*i + 1)) -+ (Fractional ideal (2*i - 1), Fractional ideal (-2*i - 1)) - sage: a = 1/(1+2*i) - sage: F1, F2 = [g.residue_field() for g in [P1,P2]]; F1, F2 -- (Residue field of Fractional ideal (-i - 2), -- Residue field of Fractional ideal (2*i + 1)) -+ (Residue field of Fractional ideal (2*i - 1), -+ Residue field of Fractional ideal (-2*i - 1)) - sage: a.valuation(P1) - 0 - sage: F1(i/7) -@@ -1122,7 +1121,7 @@ cdef class ReductionMap(Map): - Traceback (most recent call last): - ... - ZeroDivisionError: Cannot reduce field element -2/5*i + 1/5 -- modulo Fractional ideal (2*i + 1): it has negative valuation -+ modulo Fractional ideal (-2*i - 1): it has negative valuation - """ - # The reduction map is just x |--> F(to_vs(x) * (PB**(-1))) if - # either x is integral or the denominator of x is coprime to -@@ -1188,8 +1187,7 @@ cdef class ReductionMap(Map): - sage: f = k.convert_map_from(K) - sage: s = f.section(); s - Lifting map: -- From: Residue field in abar of -- Fractional ideal (-14*a^4 + 24*a^3 + 26*a^2 - 58*a + 15) -+ From: Residue field in abar of Fractional ideal (14*a^4 - 24*a^3 - 26*a^2 + 58*a - 15) - To: Number Field in a with defining polynomial x^5 - 5*x + 2 - sage: s(k.gen()) - a -@@ -1424,8 +1422,7 @@ cdef class ResidueFieldHomomorphism_global(RingHomomorphism): - sage: f = k.coerce_map_from(K.ring_of_integers()) - sage: s = f.section(); s - Lifting map: -- From: Residue field in abar of -- Fractional ideal (-14*a^4 + 24*a^3 + 26*a^2 - 58*a + 15) -+ From: Residue field in abar of Fractional ideal (14*a^4 - 24*a^3 - 26*a^2 + 58*a - 15) - To: Maximal Order generated by a in Number Field in a with defining polynomial x^5 - 5*x + 2 - sage: s(k.gen()) - a -@@ -1678,7 +1675,7 @@ cdef class LiftingMap(Section): - sage: F. = K.factor(7)[0][0].residue_field() - sage: F.lift_map() #indirect doctest - Lifting map: -- From: Residue field in tmod of Fractional ideal (theta_12^2 + 2) -+ From: Residue field in tmod of Fractional ideal (2*theta_12^3 + theta_12) - To: Maximal Order generated by theta_12 in Cyclotomic Field of order 12 and degree 4 - """ - return "Lifting" -diff --git a/src/sage/rings/finite_rings/residue_field_pari_ffelt.pyx b/src/sage/rings/finite_rings/residue_field_pari_ffelt.pyx -index e9962c3ccde..90a68c619f6 100644 ---- a/src/sage/rings/finite_rings/residue_field_pari_ffelt.pyx -+++ b/src/sage/rings/finite_rings/residue_field_pari_ffelt.pyx -@@ -103,7 +103,7 @@ class ResidueFiniteField_pari_ffelt(ResidueField_generic, FiniteField_pari_ffelt - sage: P.residue_class_degree() - 2 - sage: ff. = P.residue_field(); ff -- Residue field in alpha of Fractional ideal (-12*aa^2 + 189*aa - 475) -+ Residue field in alpha of Fractional ideal (12*aa^2 - 189*aa + 475) - sage: type(ff) - - sage: ff(alpha^2 + 1) -diff --git a/src/sage/rings/number_field/S_unit_solver.py b/src/sage/rings/number_field/S_unit_solver.py -index 0ffac369720..836edae5464 100644 ---- a/src/sage/rings/number_field/S_unit_solver.py -+++ b/src/sage/rings/number_field/S_unit_solver.py -@@ -12,10 +12,10 @@ - sage: x = polygen(ZZ, 'x') - sage: K. = NumberField(x^2 + x + 1) - sage: S = K.primes_above(3) -- sage: expected = [((0, 1), (4, 0), xi + 2, -xi - 1), -- ....: ((1, -1), (0, -1), 1/3*xi + 2/3, -1/3*xi + 1/3), -+ sage: expected = [((4, 1), (4, 0), xi + 2, -xi - 1), -+ ....: ((3, -1), (2, -1), 1/3*xi + 2/3, -1/3*xi + 1/3), - ....: ((1, 0), (5, 0), xi + 1, -xi), -- ....: ((2, 0), (5, 1), xi, -xi + 1)] -+ ....: ((2, 0), (3, 1), xi, -xi + 1)] - sage: sols = solve_S_unit_equation(K, S, 200) - sage: eq_up_to_order(sols, expected) - True -@@ -1381,7 +1381,7 @@ def defining_polynomial_for_Kp(prime, prec=106): - sage: from sage.rings.number_field.S_unit_solver import defining_polynomial_for_Kp - sage: K. = QuadraticField(2) - sage: p2 = K.prime_above(7); p2 -- Fractional ideal (-2*a + 1) -+ Fractional ideal (2*a - 1) - sage: defining_polynomial_for_Kp(p2, 10) - x + 266983762 - -@@ -1448,7 +1448,7 @@ def embedding_to_Kp(a, prime, prec): - sage: from sage.rings.number_field.S_unit_solver import embedding_to_Kp - sage: K. = QuadraticField(17) - sage: p = K.prime_above(13); p -- Fractional ideal (-a + 2) -+ Fractional ideal (a - 2) - sage: embedding_to_Kp(a-3, p, 15) - -20542890112375827 - -@@ -1791,10 +1791,10 @@ def sieve_ordering(SUK, q): - Residue field of Fractional ideal (2*xi + 1)) - - sage: sieve_data[2] -- ([18, 12, 16, 8], [18, 16, 10, 4], [18, 10, 12, 10]) -+ ([18, 9, 16, 8], [18, 7, 10, 4], [18, 3, 12, 10]) - - sage: sieve_data[3] -- (648, 2916, 3888) -+ (972, 972, 3888) - """ - - K = SUK.number_field() -@@ -2170,23 +2170,23 @@ def construct_complement_dictionaries(split_primes_list, SUK, verbose=False): - sage: SUK = K.S_unit_group(S=K.primes_above(H)) - sage: split_primes_list = [3, 7] - sage: actual = construct_complement_dictionaries(split_primes_list, SUK) -- sage: expected = {3: {(0, 1, 0): [(1, 0, 0), (0, 1, 0)], -- ....: (1, 0, 0): [(1, 0, 0), (0, 1, 0)]}, -- ....: 7: {(0, 1, 0): [(1, 0, 0), (1, 4, 4), (1, 2, 2)], -+ sage: expected = {3: {(0, 1, 0): [(0, 1, 0), (1, 0, 0)], -+ ....: (1, 0, 0): [(0, 1, 0), (1, 0, 0)]}, -+ ....: 7: {(0, 1, 0): [(1, 0, 0), (1, 2, 2), (1, 4, 4)], - ....: (0, 1, 2): [(0, 1, 2), (0, 3, 4), (0, 5, 0)], -- ....: (0, 3, 2): [(1, 0, 0), (1, 4, 4), (1, 2, 2)], -+ ....: (0, 3, 2): [(1, 0, 0), (1, 2, 2), (1, 4, 4)], - ....: (0, 3, 4): [(0, 1, 2), (0, 3, 4), (0, 5, 0)], - ....: (0, 5, 0): [(0, 1, 2), (0, 3, 4), (0, 5, 0)], -- ....: (0, 5, 4): [(1, 0, 0), (1, 4, 4), (1, 2, 2)], -- ....: (1, 0, 0): [(0, 5, 4), (0, 3, 2), (0, 1, 0)], -- ....: (1, 0, 2): [(1, 0, 4), (1, 4, 2), (1, 2, 0)], -- ....: (1, 0, 4): [(1, 2, 4), (1, 4, 0), (1, 0, 2)], -- ....: (1, 2, 0): [(1, 2, 4), (1, 4, 0), (1, 0, 2)], -- ....: (1, 2, 2): [(0, 5, 4), (0, 3, 2), (0, 1, 0)], -- ....: (1, 2, 4): [(1, 0, 4), (1, 4, 2), (1, 2, 0)], -- ....: (1, 4, 0): [(1, 0, 4), (1, 4, 2), (1, 2, 0)], -- ....: (1, 4, 2): [(1, 2, 4), (1, 4, 0), (1, 0, 2)], -- ....: (1, 4, 4): [(0, 5, 4), (0, 3, 2), (0, 1, 0)]}} -+ ....: (0, 5, 4): [(1, 0, 0), (1, 2, 2), (1, 4, 4)], -+ ....: (1, 0, 0): [(0, 1, 0), (0, 3, 2), (0, 5, 4)], -+ ....: (1, 0, 2): [(1, 0, 4), (1, 2, 0), (1, 4, 2)], -+ ....: (1, 0, 4): [(1, 0, 2), (1, 2, 4), (1, 4, 0)], -+ ....: (1, 2, 0): [(1, 0, 2), (1, 2, 4), (1, 4, 0)], -+ ....: (1, 2, 2): [(0, 1, 0), (0, 3, 2), (0, 5, 4)], -+ ....: (1, 2, 4): [(1, 0, 4), (1, 2, 0), (1, 4, 2)], -+ ....: (1, 4, 0): [(1, 0, 4), (1, 2, 0), (1, 4, 2)], -+ ....: (1, 4, 2): [(1, 0, 2), (1, 2, 4), (1, 4, 0)], -+ ....: (1, 4, 4): [(0, 1, 0), (0, 3, 2), (0, 5, 4)]}} - sage: all(set(actual[p][vec]) == set(expected[p][vec]) - ....: for p in [3, 7] for vec in expected[p]) - True -@@ -2693,9 +2693,9 @@ def sieve_below_bound(K, S, bound=10, bump=10, split_primes_list=[], verbose=Fal - sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3))) - sage: S = SUK.primes() - sage: sols = sieve_below_bound(K, S, 10) -- sage: expected = [((1, -1), (0, -1), 1/3*xi + 2/3, -1/3*xi + 1/3), -- ....: ((0, 1), (4, 0), xi + 2, -xi - 1), -- ....: ((2, 0), (5, 1), xi, -xi + 1), -+ sage: expected = [((3, -1), (2, -1), 1/3*xi + 2/3, -1/3*xi + 1/3), -+ ....: ((4, 1), (4, 0), xi + 2, -xi - 1), -+ ....: ((2, 0), (3, 1), xi, -xi + 1), - ....: ((1, 0), (5, 0), xi + 1, -xi)] - sage: eq_up_to_order(sols, expected) - True -@@ -2758,10 +2758,10 @@ def solve_S_unit_equation(K, S, prec=106, include_exponents=True, include_bound= - sage: K. = NumberField(x^2 + x + 1) - sage: S = K.primes_above(3) - sage: sols = solve_S_unit_equation(K, S, 200) -- sage: expected = [((0, 1), (4, 0), xi + 2, -xi - 1), -- ....: ((1, -1), (0, -1), 1/3*xi + 2/3, -1/3*xi + 1/3), -+ sage: expected = [((4, 1), (4, 0), xi + 2, -xi - 1), -+ ....: ((3, -1), (2, -1), 1/3*xi + 2/3, -1/3*xi + 1/3), - ....: ((1, 0), (5, 0), xi + 1, -xi), -- ....: ((2, 0), (5, 1), xi, -xi + 1)] -+ ....: ((2, 0), (3, 1), xi, -xi + 1)] - sage: eq_up_to_order(sols, expected) - True - -@@ -2769,7 +2769,7 @@ def solve_S_unit_equation(K, S, prec=106, include_exponents=True, include_bound= - - sage: solutions, bound = solve_S_unit_equation(K, S, 100, include_bound=True) - sage: bound -- 7 -+ 6 - - You can omit the exponent vectors:: - -diff --git a/src/sage/rings/number_field/bdd_height.py b/src/sage/rings/number_field/bdd_height.py -index 9635afa3613..8ac8904662c 100644 ---- a/src/sage/rings/number_field/bdd_height.py -+++ b/src/sage/rings/number_field/bdd_height.py -@@ -236,7 +236,8 @@ def bdd_norm_pr_ideal_gens(K, norm_list): - sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens - sage: K. = QuadraticField(123) - sage: bdd_norm_pr_ideal_gens(K, range(5)) -- {0: [0], 1: [1], 2: [g + 11], 3: [], 4: [2]} -+ {0: [0], 1: [1], 2: [g + 11], 3: [], 4: [2]} # 64-bit -+ {0: [0], 1: [1], 2: [g - 11], 3: [], 4: [2]} # 32-bit - - :: - -diff --git a/src/sage/rings/number_field/class_group.py b/src/sage/rings/number_field/class_group.py -index e1185a499bb..a9832527ce2 100644 ---- a/src/sage/rings/number_field/class_group.py -+++ b/src/sage/rings/number_field/class_group.py -@@ -524,9 +524,9 @@ def gens_ideals(self): - Class group of order 68 with structure C34 x C2 of Number Field - in a with defining polynomial x^2 + x + 23899 - sage: C.gens() -- (Fractional ideal class (7, a + 5), Fractional ideal class (5, a + 3)) -+ (Fractional ideal class (83, a + 21), Fractional ideal class (15, a + 8)) - sage: C.gens_ideals() -- (Fractional ideal (7, a + 5), Fractional ideal (5, a + 3)) -+ (Fractional ideal (83, a + 21), Fractional ideal (15, a + 8)) - """ - return self.gens_values() - -diff --git a/src/sage/rings/number_field/galois_group.py b/src/sage/rings/number_field/galois_group.py -index bb4e453c650..ac7f14da21d 100644 ---- a/src/sage/rings/number_field/galois_group.py -+++ b/src/sage/rings/number_field/galois_group.py -@@ -994,9 +994,11 @@ def artin_symbol(self, P): - sage: x = polygen(ZZ, 'x') - sage: K. = NumberField(x^4 - 2*x^2 + 2, 'a').galois_closure() - sage: G = K.galois_group() -- sage: [G.artin_symbol(P) for P in K.primes_above(7)] # random (see remark in primes_above) -- [(1,4)(2,3)(5,8)(6,7), (1,4)(2,3)(5,8)(6,7), -- (1,5)(2,6)(3,7)(4,8), (1,5)(2,6)(3,7)(4,8)] -+ sage: sorted([G.artin_symbol(P) for P in K.primes_above(7)]) # random (see remark in primes_above) -+ [(1,4)(2,3)(5,8)(6,7), -+ (1,4)(2,3)(5,8)(6,7), -+ (1,5)(2,6)(3,7)(4,8), -+ (1,5)(2,6)(3,7)(4,8)] - sage: G.artin_symbol(17) - Traceback (most recent call last): - ... -diff --git a/src/sage/rings/number_field/number_field.py b/src/sage/rings/number_field/number_field.py -index 05371850c83..324db212f61 100644 ---- a/src/sage/rings/number_field/number_field.py -+++ b/src/sage/rings/number_field/number_field.py -@@ -3621,7 +3621,7 @@ def fractional_ideal(self, *gens, **kwds): - sage: L. = K.extension(x^2 - 3, x^2 + 1) - sage: M. = L.extension(x^2 + 1) - sage: L.ideal(K.ideal(2, a)) -- Fractional ideal (a) -+ Fractional ideal (-a) - sage: M.ideal(K.ideal(2, a)) == M.ideal(a*(b - c)/2) - True - -@@ -3664,35 +3664,37 @@ def ideals_of_bdd_norm(self, bound): - ....: print(n) - ....: for I in sorted(d[n]): - ....: print(I) -- 1 -- Fractional ideal (1) -- 2 -- Fractional ideal (2, 1/2*a - 1/2) -- Fractional ideal (2, 1/2*a + 1/2) -- 3 -- Fractional ideal (3, 1/2*a - 1/2) -- Fractional ideal (3, 1/2*a + 1/2) -- 4 -- Fractional ideal (2) -- Fractional ideal (4, 1/2*a + 3/2) -- Fractional ideal (4, 1/2*a + 5/2) -- 5 -- 6 -- Fractional ideal (1/2*a - 1/2) -- Fractional ideal (1/2*a + 1/2) -- Fractional ideal (6, 1/2*a + 5/2) -- Fractional ideal (6, 1/2*a + 7/2) -- 7 -- 8 -- Fractional ideal (4, a - 1) -- Fractional ideal (4, a + 1) -- Fractional ideal (1/2*a + 3/2) -- Fractional ideal (1/2*a - 3/2) -- 9 -- Fractional ideal (3) -- Fractional ideal (9, 1/2*a + 7/2) -- Fractional ideal (9, 1/2*a + 11/2) -- 10 -+ 1 -+ Fractional ideal (1) -+ 2 -+ Fractional ideal (2, 1/2*a - 1/2) -+ Fractional ideal (2, 1/2*a + 1/2) -+ 3 -+ Fractional ideal (3, 1/2*a - 1/2) -+ Fractional ideal (3, 1/2*a + 1/2) -+ 4 -+ Fractional ideal (2) -+ Fractional ideal (4, 1/2*a + 3/2) -+ Fractional ideal (4, 1/2*a + 5/2) -+ 5 -+ 6 -+ Fractional ideal (-1/2*a + 1/2) -+ Fractional ideal (1/2*a + 1/2) -+ Fractional ideal (6, 1/2*a + 5/2) -+ Fractional ideal (6, 1/2*a + 7/2) -+ 7 -+ 8 -+ Fractional ideal (4, a - 1) -+ Fractional ideal (4, a + 1) -+ Fractional ideal (-1/2*a - 3/2) -+ Fractional ideal (1/2*a - 3/2) -+ 9 -+ Fractional ideal (3) -+ Fractional ideal (9, 1/2*a + 7/2) -+ Fractional ideal (9, 1/2*a + 11/2) -+ 10 -+ sage: [[I.norm() for I in sorted(d[n])] for n in d] -+ [[1], [2, 2], [3, 3], [4, 4, 4], [], [6, 6, 6, 6], [], [8, 8, 8, 8], [9, 9, 9], []] - """ - hnf_ideals = self.pari_nf().ideallist(bound) - d = {} -@@ -3923,8 +3925,10 @@ def primes_of_bounded_norm(self, B): - - sage: K. = QuadraticField(-1) - sage: K.primes_of_bounded_norm(10) -- [Fractional ideal (i + 1), Fractional ideal (-i - 2), -- Fractional ideal (2*i + 1), Fractional ideal (3)] -+ [Fractional ideal (i - 1), -+ Fractional ideal (2*i - 1), -+ Fractional ideal (-2*i - 1), -+ Fractional ideal (3)] - sage: K.primes_of_bounded_norm(1) - [] - sage: x = polygen(QQ, 'x') -@@ -3933,10 +3937,10 @@ def primes_of_bounded_norm(self, B): - sage: P - [Fractional ideal (a), - Fractional ideal (a + 1), -- Fractional ideal (-a^2 - 1), -+ Fractional ideal (a^2 + 1), - Fractional ideal (a^2 + a - 1), - Fractional ideal (2*a + 1), -- Fractional ideal (-2*a^2 - a - 1), -+ Fractional ideal (2*a^2 + a + 1), - Fractional ideal (a^2 - 2*a - 1), - Fractional ideal (a + 3)] - sage: [p.norm() for p in P] -@@ -3986,10 +3990,10 @@ def primes_of_bounded_norm_iter(self, B): - sage: K. = QuadraticField(-1) - sage: it = K.primes_of_bounded_norm_iter(10) - sage: list(it) -- [Fractional ideal (i + 1), -+ [Fractional ideal (i - 1), - Fractional ideal (3), -- Fractional ideal (-i - 2), -- Fractional ideal (2*i + 1)] -+ Fractional ideal (2*i - 1), -+ Fractional ideal (-2*i - 1)] - sage: list(K.primes_of_bounded_norm_iter(1)) - [] - """ -@@ -4314,7 +4318,7 @@ def pari_nf(self, important=True): - sage: k. = NumberField(x^4 - 3/2*x + 5/3); k - Number Field in a with defining polynomial x^4 - 3/2*x + 5/3 - sage: k.pari_nf() -- [y^4 - 324*y + 2160, [0, 2], 48918708, 216, ..., [36, 36*y, y^3 + 6*y^2 - 252, 6*y^2], [1, 0, 0, 252; 0, 1, 0, 0; 0, 0, 0, 36; 0, 0, 6, -36], [1, 0, 0, 0, 0, 0, -18, 42, 0, -18, -46, -60, 0, 42, -60, -60; 0, 1, 0, 0, 1, 0, 2, 0, 0, 2, -11, -1, 0, 0, -1, 9; 0, 0, 1, 0, 0, 0, 6, 6, 1, 6, -5, 0, 0, 6, 0, 0; 0, 0, 0, 1, 0, 6, -6, -6, 0, -6, -1, 2, 1, -6, 2, 0]] -+ [y^4 - 324*y + 2160, [0, 2], 48918708, 216, ..., [36, 36*y, y^3 + 6*y^2 - 252, -6*y^2], [1, 0, 0, 252; 0, 1, 0, 0; 0, 0, 0, 36; 0, 0, -6, 36], [1, 0, 0, 0, 0, 0, -18, -42, 0, -18, -46, 60, 0, -42, 60, -60; 0, 1, 0, 0, 1, 0, 2, 0, 0, 2, -11, 1, 0, 0, 1, 9; 0, 0, 1, 0, 0, 0, 6, -6, 1, 6, -5, 0, 0, -6, 0, 0; 0, 0, 0, 1, 0, -6, 6, -6, 0, 6, 1, 2, 1, -6, 2, 0]] - sage: pari(k) - [y^4 - 324*y + 2160, [0, 2], 48918708, 216, ...] - sage: gp(k) -@@ -4441,10 +4445,14 @@ def pari_bnf(self, proof=None, units=True): - bnf = self._pari_bnf - except AttributeError: - f = self.pari_polynomial("y") -+ _saved_rand = pari.getrand() -+ # make this deterministic, it affects printing of ideals -+ pari.setrand(1) - if units: - self._pari_bnf = f.bnfinit(1) - else: - self._pari_bnf = f.bnfinit() -+ pari.setrand(_saved_rand) - bnf = self._pari_bnf - # Certify if needed - if proof and not getattr(self, "_pari_bnf_certified", False): -@@ -4804,7 +4812,7 @@ def _S_class_group_and_units(self, S, proof=True): - 1/13*a^2 + 7/13*a - 332/13, - -1/13*a^2 + 6/13*a + 345/13, - -1, -- -2/13*a^2 - 1/13*a + 755/13] -+ 1/13*a^2 - 19/13*a - 7/13] - sage: units[5] in (1/13*a^2 - 19/13*a - 7/13, 1/13*a^2 + 20/13*a - 7/13) - True - sage: len(units) == 6 -@@ -4815,7 +4823,8 @@ def _S_class_group_and_units(self, S, proof=True): - - sage: K. = NumberField(2*x^2 - 1/3) - sage: K._S_class_group_and_units(tuple(K.primes_above(2) + K.primes_above(3))) -- ([6*a + 2, 6*a + 3, -1, -12*a + 5], []) -+ ([6*a + 2, -6*a + 3, -1, -12*a - 5], []) # 64-bit -+ ([6*a + 2, -6*a - 3, -1, -12*a - 5], []) # 32-bit - """ - K_pari = self.pari_bnf(proof=proof) - S_pari = [p.pari_prime() for p in sorted(set(S))] -@@ -4993,7 +5002,7 @@ def selmer_generators(self, S, m, proof=True, orders=False): - 1/13*a^2 + 7/13*a - 332/13, - -1/13*a^2 + 6/13*a + 345/13, - -1, -- -2/13*a^2 - 1/13*a + 755/13] -+ 1/13*a^2 - 19/13*a - 7/13] - sage: gens[5] in (1/13*a^2 - 19/13*a - 7/13, 1/13*a^2 + 20/13*a - 7/13) - True - sage: gens[6] in (-1/13*a^2 + 45/13*a - 97/13, 1/13*a^2 - 45/13*a + 97/13) -@@ -5157,9 +5166,7 @@ def selmer_space(self, S, p, proof=None): - - sage: [K.ideal(g).factor() for g in gens] - [(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1)), -- Fractional ideal (a), -- (Fractional ideal (2, a + 1))^2, -- 1] -+ Fractional ideal (-a), (Fractional ideal (2, a + 1))^2, 1] - - sage: toKS2(10) - (0, 0, 1, 1) -@@ -5637,7 +5644,7 @@ def different(self): - sage: k. = NumberField(x^2 + 23) - sage: d = k.different() - sage: d -- Fractional ideal (-a) -+ Fractional ideal (a) - sage: d.norm() - 23 - sage: k.disc() -@@ -5757,7 +5764,7 @@ def elements_of_norm(self, n, proof=None) -> list: - sage: K.elements_of_norm(3) - [] - sage: K.elements_of_norm(50) -- [-a - 7, 5*a - 5, 7*a + 1] -+ [7*a - 1, 5*a - 5, -7*a - 1] - - TESTS: - -@@ -5869,10 +5876,9 @@ def factor(self, n): - sage: K.factor(1/3) - (Fractional ideal (3))^-1 - sage: K.factor(1+a) -- Fractional ideal (a + 1) -+ Fractional ideal (a - 1) - sage: K.factor(1+a/5) -- (Fractional ideal (a + 1)) * (Fractional ideal (-a - 2))^-1 -- * (Fractional ideal (2*a + 1))^-1 * (Fractional ideal (-2*a + 3)) -+ (Fractional ideal (a - 1)) * (Fractional ideal (2*a - 1))^-1 * (Fractional ideal (-2*a - 1))^-1 * (Fractional ideal (3*a + 2)) - - An example over a relative number field:: - -@@ -5905,9 +5911,9 @@ def factor(self, n): - sage: (fi, fj) = f[::] - sage: (fi[1], fj[1]) - (1, 1) -- sage: fi[0] == L.fractional_ideal(1/2*a*b - a + 1/2) -+ sage: fi[0] == L.fractional_ideal(-1/2*a*b - a + 1/2) - True -- sage: fj[0] == L.fractional_ideal(-1/2*a*b - a + 1/2) -+ sage: fj[0] == L.fractional_ideal(1/2*a*b - a + 1/2) - True - """ - return self.ideal(n).factor() -@@ -6519,13 +6525,15 @@ def reduced_basis(self, prec=None): - # the inner product on the Minkowski embedding, which is - # faster than computing all the conjugates, etc ... - -+ # flag to disable FLATTER, which is much more unstable than fplll -+ flag = 1 if pari.version() >= (2,17) else 0 - if self.is_totally_real(): - from sage.matrix.constructor import matrix - M = matrix(ZZ, d, d, [[(x*y).trace() for x in ZK] for y in ZK]) -- T = pari(M).qflllgram() -+ T = pari(M).qflllgram(flag=flag) - else: - M = self.minkowski_embedding(ZK, prec=prec) -- T = pari(M).qflll() -+ T = pari(M).qflll(flag=flag) - - return [sum([ZZ(T[i][j]) * ZK[j] for j in range(d)]) for i in range(d)] - -@@ -7102,14 +7110,14 @@ def units(self, proof=None): - sage: K.units(proof=True) # takes forever, not tested - ... - sage: K.units(proof=False) # result not independently verified -- (-a^9 - a + 1, -+ (a^9 + a - 1, -+ -a^15 + a^12 - a^10 + a^9 + 2*a^8 - 3*a^7 - a^6 + 3*a^5 - a^4 - 4*a^3 + 3*a^2 + 2*a - 2, -+ a^15 + a^14 + a^13 + a^12 + a^10 - a^7 - a^6 - a^2 - 1, -+ 2*a^16 - 3*a^15 + 3*a^14 - 3*a^13 + 3*a^12 - a^11 + a^9 - 3*a^8 + 4*a^7 - 5*a^6 + 6*a^5 - 4*a^4 + 3*a^3 - 2*a^2 - 2*a + 4, - -a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 - a^7 + 2*a^6 - a^4 + 3*a^3 - 2*a^2 + 2*a - 1, -- 2*a^16 - a^14 - a^13 + 3*a^12 - 2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 - 2*a^3 - 2*a^2 + 3*a + 4, -- a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1, -- -a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2, -- -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 - 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4, -- a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2, -- 2*a^16 + a^15 - a^11 - 3*a^10 - 4*a^9 - 4*a^8 - 4*a^7 - 5*a^6 - 7*a^5 - 8*a^4 - 6*a^3 - 5*a^2 - 6*a - 7) -+ a^16 - 2*a^15 - 2*a^13 - a^12 - a^11 - 2*a^10 + a^9 - 2*a^8 + 2*a^7 - 3*a^6 - 3*a^4 - 2*a^3 - a^2 - 4*a + 2, -+ -a^15 - a^14 - 2*a^11 - a^10 + a^9 - a^8 - 2*a^7 + a^5 - 2*a^3 + a^2 + 3*a - 1, -+ -3*a^16 - 3*a^15 - 3*a^14 - 3*a^13 - 3*a^12 - 2*a^11 - 2*a^10 - 2*a^9 - a^8 + a^7 + 2*a^6 + 3*a^5 + 3*a^4 + 4*a^3 + 6*a^2 + 8*a + 8) - - TESTS: - -@@ -7118,7 +7126,7 @@ def units(self, proof=None): - - sage: K. = NumberField(1/2*x^2 - 1/6) - sage: K.units() -- (3*a - 2,) -+ (3*a + 2,) - """ - proof = proof_flag(proof) - -@@ -7200,14 +7208,14 @@ def unit_group(self, proof=None): - (u0, u1, u2, u3, u4, u5, u6, u7, u8) - sage: U.gens_values() # result not independently verified - [-1, -- -a^9 - a + 1, -+ a^9 + a - 1, -+ -a^15 + a^12 - a^10 + a^9 + 2*a^8 - 3*a^7 - a^6 + 3*a^5 - a^4 - 4*a^3 + 3*a^2 + 2*a - 2, -+ a^15 + a^14 + a^13 + a^12 + a^10 - a^7 - a^6 - a^2 - 1, -+ 2*a^16 - 3*a^15 + 3*a^14 - 3*a^13 + 3*a^12 - a^11 + a^9 - 3*a^8 + 4*a^7 - 5*a^6 + 6*a^5 - 4*a^4 + 3*a^3 - 2*a^2 - 2*a + 4, - -a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 - a^7 + 2*a^6 - a^4 + 3*a^3 - 2*a^2 + 2*a - 1, -- 2*a^16 - a^14 - a^13 + 3*a^12 - 2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 - 2*a^3 - 2*a^2 + 3*a + 4, -- a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1, -- -a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2, -- -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 - 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4, -- a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2, -- 2*a^16 + a^15 - a^11 - 3*a^10 - 4*a^9 - 4*a^8 - 4*a^7 - 5*a^6 - 7*a^5 - 8*a^4 - 6*a^3 - 5*a^2 - 6*a - 7] -+ a^16 - 2*a^15 - 2*a^13 - a^12 - a^11 - 2*a^10 + a^9 - 2*a^8 + 2*a^7 - 3*a^6 - 3*a^4 - 2*a^3 - a^2 - 4*a + 2, -+ -a^15 - a^14 - 2*a^11 - a^10 + a^9 - a^8 - 2*a^7 + a^5 - 2*a^3 + a^2 + 3*a - 1, -+ -3*a^16 - 3*a^15 - 3*a^14 - 3*a^13 - 3*a^12 - 2*a^11 - 2*a^10 - 2*a^9 - a^8 + a^7 + 2*a^6 + 3*a^5 + 3*a^4 + 4*a^3 + 6*a^2 + 8*a + 8] - """ - proof = proof_flag(proof) - -@@ -7256,8 +7264,8 @@ def S_unit_group(self, proof=None, S=None): - sage: U = K.S_unit_group(S=a); U - S-unit group with structure C10 x Z x Z x Z of - Number Field in a with defining polynomial x^4 - 10*x^3 + 100*x^2 - 375*x + 1375 -- with S = (Fractional ideal (5, 1/275*a^3 + 4/55*a^2 - 5/11*a + 5), -- Fractional ideal (11, 1/275*a^3 + 4/55*a^2 - 5/11*a + 9)) -+ with S = (Fractional ideal (5, -7/275*a^3 + 1/11*a^2 - 9/11*a), -+ Fractional ideal (11, -7/275*a^3 + 1/11*a^2 - 9/11*a + 3)) - sage: U.gens() - (u0, u1, u2, u3) - sage: U.gens_values() # random -@@ -7268,8 +7276,8 @@ def S_unit_group(self, proof=None, S=None): - sage: [u.multiplicative_order() for u in U.gens()] - [10, +Infinity, +Infinity, +Infinity] - sage: U.primes() -- (Fractional ideal (5, 1/275*a^3 + 4/55*a^2 - 5/11*a + 5), -- Fractional ideal (11, 1/275*a^3 + 4/55*a^2 - 5/11*a + 9)) -+ (Fractional ideal (5, -7/275*a^3 + 1/11*a^2 - 9/11*a), -+ Fractional ideal (11, -7/275*a^3 + 1/11*a^2 - 9/11*a + 3)) - - With the default value of `S`, the S-unit group is the same as - the global unit group:: -@@ -7422,7 +7430,7 @@ def S_unit_solutions(self, S=[], prec=106, include_exponents=False, include_boun - sage: # needs sage.rings.padics - sage: solutions, bound = K.S_unit_solutions(S, prec=100, include_bound=True) - sage: bound -- 7 -+ 6 - """ - from .S_unit_solver import solve_S_unit_equation - return solve_S_unit_equation(self, S, prec, include_exponents, include_bound, proof) -diff --git a/src/sage/rings/number_field/number_field_element.pyx b/src/sage/rings/number_field/number_field_element.pyx -index 27432813b2b..a22b68e6093 100644 ---- a/src/sage/rings/number_field/number_field_element.pyx -+++ b/src/sage/rings/number_field/number_field_element.pyx -@@ -1954,14 +1954,14 @@ cdef class NumberFieldElement(NumberFieldElement_base): - sage: x = polygen(ZZ, 'x') - sage: K. = NumberField(x^2 + 1) - sage: (6*i + 6).factor() -- (-i) * (i + 1)^3 * 3 -+ (i - 1)^3 * 3 - - In the following example, the class number is 2. If a factorization - in prime elements exists, we will find it:: - - sage: K. = NumberField(x^2 - 10) - sage: factor(169*a + 531) -- (-6*a - 19) * (-3*a - 1) * (-2*a + 9) -+ (-6*a - 19) * (2*a - 9) * (3*a + 1) - sage: factor(K(3)) - Traceback (most recent call last): - ... -@@ -2043,7 +2043,7 @@ cdef class NumberFieldElement(NumberFieldElement_base): - 0 - sage: R = K.maximal_order() - sage: R(i+1).gcd(2) -- i + 1 -+ i - 1 - sage: R = K.order(2*i) - sage: R(1).gcd(R(4*i)) - 1 -@@ -4238,7 +4238,7 @@ cdef class NumberFieldElement(NumberFieldElement_base): - - sage: P5s = F(5).support() - sage: P5s -- [Fractional ideal (-t^2 - 1), Fractional ideal (t^2 - 2*t - 1)] -+ [Fractional ideal (t^2 + 1), Fractional ideal (t^2 - 2*t - 1)] - sage: all(5 in P5 for P5 in P5s) - True - sage: all(P5.is_prime() for P5 in P5s) -@@ -4487,7 +4487,7 @@ cdef class NumberFieldElement(NumberFieldElement_base): - sage: f = Qi.embeddings(K)[0] - sage: a = f(2+3*i) * (2-zeta)^2 - sage: a.descend_mod_power(Qi,2) -- [-2*i + 3, 3*i + 2] -+ [3*i + 2, 2*i - 3] - - An absolute example:: - -diff --git a/src/sage/rings/number_field/number_field_ideal.py b/src/sage/rings/number_field/number_field_ideal.py -index 30fc8326917..60ac76e1ddc 100644 ---- a/src/sage/rings/number_field/number_field_ideal.py -+++ b/src/sage/rings/number_field/number_field_ideal.py -@@ -75,7 +75,7 @@ class NumberFieldIdeal(Ideal_generic): - Fractional ideal (3) - sage: F = pari(K).idealprimedec(5) - sage: K.ideal(F[0]) -- Fractional ideal (2*i + 1) -+ Fractional ideal (-2*i - 1) - - TESTS: - -@@ -241,7 +241,7 @@ def _richcmp_(self, other, op): - sage: K. = NumberField(x^2 + 3); K - Number Field in a with defining polynomial x^2 + 3 - sage: f = K.factor(15); f -- (Fractional ideal (1/2*a + 3/2))^2 * (Fractional ideal (5)) -+ (Fractional ideal (-a))^2 * (Fractional ideal (5)) - sage: (f[0][0] < f[1][0]) # potentially random - True - sage: (f[0][0] == f[0][0]) -@@ -278,7 +278,7 @@ def _mul_(self, other): - sage: A = K.ideal([5, 2 + I]) - sage: B = K.ideal([13, 5 + 12*I]) - sage: A*B -- Fractional ideal (4*I - 7) -+ Fractional ideal (-4*I + 7) - sage: (K.ideal(3 + I) * K.ideal(7 + I)).gens() - (10*I + 20,) - -@@ -688,17 +688,17 @@ def free_module(self): - sage: I.free_module() - Free module of degree 4 and rank 4 over Integer Ring - User basis matrix: -- [ 4 0 0 0] -- [ -3 7 -1 1] -- [ 3 7 1 1] -- [ 0 -10 0 -2] -+ [ 4 0 0 0] -+ [ 3 7 1 1] -+ [ 0 10 0 2] -+ [ 3 -7 1 -1] - sage: J = I^(-1); J.free_module() - Free module of degree 4 and rank 4 over Integer Ring - User basis matrix: - [ 1/4 0 0 0] -- [-3/16 7/16 -1/16 1/16] - [ 3/16 7/16 1/16 1/16] -- [ 0 -5/8 0 -1/8] -+ [ 0 5/8 0 1/8] -+ [ 3/16 -7/16 1/16 -1/16] - - An example of intersecting ideals by intersecting free modules.:: - -@@ -795,7 +795,7 @@ def gens_reduced(self, proof=None): - sage: J.is_principal() - False - sage: J.gens_reduced() -- (5, a) -+ (5, -a) - sage: all(j.parent() is K for j in J.gens()) - True - sage: all(j.parent() is K for j in J.gens_reduced()) -@@ -2422,9 +2422,9 @@ def denominator(self): - sage: I = K.ideal((3+4*i)/5); I - Fractional ideal (4/5*i + 3/5) - sage: I.denominator() -- Fractional ideal (2*i + 1) -+ Fractional ideal (-2*i - 1) - sage: I.numerator() -- Fractional ideal (-i - 2) -+ Fractional ideal (2*i - 1) - sage: I.numerator().is_integral() and I.denominator().is_integral() - True - sage: I.numerator() + I.denominator() == K.unit_ideal() -@@ -2453,9 +2453,9 @@ def numerator(self): - sage: I = K.ideal((3+4*i)/5); I - Fractional ideal (4/5*i + 3/5) - sage: I.denominator() -- Fractional ideal (2*i + 1) -+ Fractional ideal (-2*i - 1) - sage: I.numerator() -- Fractional ideal (-i - 2) -+ Fractional ideal (2*i - 1) - sage: I.numerator().is_integral() and I.denominator().is_integral() - True - sage: I.numerator() + I.denominator() == K.unit_ideal() -@@ -3170,11 +3170,11 @@ def _p_quotient(self, p): - Partially defined quotient map - from Number Field in i with defining polynomial x^2 + 1 - to an explicit vector space representation for the quotient of -- the ring of integers by (p,I) for the ideal I=Fractional ideal (-i - 2). -+ the ring of integers by (p,I) for the ideal I=Fractional ideal (2*i - 1). - sage: lift - Lifting map - to Gaussian Integers generated by i in Number Field in i with defining polynomial x^2 + 1 -- from quotient of integers by Fractional ideal (-i - 2) -+ from quotient of integers by Fractional ideal (2*i - 1) - """ - return quotient_char_p(self, p) - -@@ -3219,11 +3219,11 @@ def residue_field(self, names=None): - - sage: K. = NumberField(x^2 + 1) - sage: P1, P2 = [g[0] for g in K.factor(5)]; P1, P2 -- (Fractional ideal (-i - 2), Fractional ideal (2*i + 1)) -+ (Fractional ideal (2*i - 1), Fractional ideal (-2*i - 1)) - sage: a = 1/(1+2*i) - sage: F1, F2 = [g.residue_field() for g in [P1, P2]]; F1, F2 -- (Residue field of Fractional ideal (-i - 2), -- Residue field of Fractional ideal (2*i + 1)) -+ (Residue field of Fractional ideal (2*i - 1), -+ Residue field of Fractional ideal (-2*i - 1)) - sage: a.valuation(P1) - 0 - sage: F1(i/7) -@@ -3236,7 +3236,7 @@ def residue_field(self, names=None): - Traceback (most recent call last): - ... - ZeroDivisionError: Cannot reduce field element -2/5*i + 1/5 -- modulo Fractional ideal (2*i + 1): it has negative valuation -+ modulo Fractional ideal (-2*i - 1): it has negative valuation - - An example with a relative number field:: - -@@ -3497,7 +3497,7 @@ def quotient_char_p(I, p): - [] - - sage: I = K.factor(13)[0][0]; I -- Fractional ideal (-2*i + 3) -+ Fractional ideal (3*i + 2) - sage: I.residue_class_degree() - 1 - sage: quotient_char_p(I, 13)[0] -diff --git a/src/sage/rings/number_field/number_field_ideal_rel.py b/src/sage/rings/number_field/number_field_ideal_rel.py -index 7f6cfd9b1b7..129d0288024 100644 ---- a/src/sage/rings/number_field/number_field_ideal_rel.py -+++ b/src/sage/rings/number_field/number_field_ideal_rel.py -@@ -11,7 +11,7 @@ - sage: G = [from_A(z) for z in I.gens()]; G - [7, -2*b*a - 1] - sage: K.fractional_ideal(G) -- Fractional ideal ((1/2*b + 2)*a - 1/2*b + 2) -+ Fractional ideal ((-1/2*b + 2)*a - 1/2*b - 2) - sage: K.fractional_ideal(G).absolute_norm().factor() - 7^2 - -@@ -189,7 +189,7 @@ def absolute_ideal(self, names='a'): - sage: J.absolute_norm() - 2 - sage: J.ideal_below() -- Fractional ideal (b) -+ Fractional ideal (-b) - sage: J.ideal_below().norm() - 2 - """ -@@ -277,7 +277,7 @@ def gens_reduced(self): - sage: L. = K.extension(5*x^2 + 1) - sage: P = L.primes_above(2)[0] - sage: P.gens_reduced() -- (2, -15*a*b + 3*a + 1) -+ (2, -15*a*b - 3*a + 1) - """ - try: - # Compute the single generator, if it exists -@@ -548,14 +548,12 @@ def factor(self): - sage: x = polygen(ZZ, 'x') - sage: K. = QQ.extension([x^2 + 11, x^2 - 5]) - sage: K.factor(5) -- (Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 3/4))^2 -- * (Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 7/4))^2 -+ (Fractional ideal (5, (1/4*b - 1/4)*a + 1/4*b + 3/4))^2 * (Fractional ideal (5, (1/4*b - 1/4)*a + 1/4*b + 7/4))^2 - sage: K.ideal(5).factor() -- (Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 3/4))^2 -- * (Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 7/4))^2 -+ (Fractional ideal (5, (1/4*b - 1/4)*a + 1/4*b + 3/4))^2 * (Fractional ideal (5, (1/4*b - 1/4)*a + 1/4*b + 7/4))^2 - sage: K.ideal(5).prime_factors() -- [Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 3/4), -- Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 7/4)] -+ [Fractional ideal (5, (1/4*b - 1/4)*a + 1/4*b + 3/4), -+ Fractional ideal (5, (1/4*b - 1/4)*a + 1/4*b + 7/4)] - - sage: PQ. = QQ[] - sage: F. = NumberFieldTower([X^2 - 2, X^2 - 3]) -diff --git a/src/sage/rings/number_field/number_field_rel.py b/src/sage/rings/number_field/number_field_rel.py -index 970707f2457..07b075060c6 100644 ---- a/src/sage/rings/number_field/number_field_rel.py -+++ b/src/sage/rings/number_field/number_field_rel.py -@@ -233,21 +233,21 @@ def __init__(self, base, polynomial, name, - sage: l. = k.extension(5*x^2 + 3); l - Number Field in b with defining polynomial 5*x^2 + 3 over its base field - sage: l.pari_rnf() -- [x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + (-3/4*y^3 - 1/4*y^2 - 17/4*y - 19/4), ..., y^4 + 6*y^2 + 1, x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + (-3/4*y^3 - 1/4*y^2 - 17/4*y - 19/4)], [0, 0]] -+ [x^2 + (5/4*y^3 - 1/4*y^2 + 27/4*y - 3/4)*x + (-9/4*y^3 - 1/4*y^2 - 47/4*y - 7/4), ..., y^4 + 6*y^2 + 1, x^2 + (5/4*y^3 - 1/4*y^2 + 27/4*y - 3/4)*x + (-9/4*y^3 - 1/4*y^2 - 47/4*y - 7/4)], [0, 0]] - sage: b - b - - sage: l. = k.extension(x^2 + 3/5); l - Number Field in b with defining polynomial x^2 + 3/5 over its base field - sage: l.pari_rnf() -- [x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + (-3/4*y^3 - 1/4*y^2 - 17/4*y - 19/4), ..., y^4 + 6*y^2 + 1, x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + (-3/4*y^3 - 1/4*y^2 - 17/4*y - 19/4)], [0, 0]] -+ [x^2 + (5/4*y^3 - 1/4*y^2 + 27/4*y - 3/4)*x + (-9/4*y^3 - 1/4*y^2 - 47/4*y - 7/4), ..., y^4 + 6*y^2 + 1, x^2 + (5/4*y^3 - 1/4*y^2 + 27/4*y - 3/4)*x + (-9/4*y^3 - 1/4*y^2 - 47/4*y - 7/4)], [0, 0]] - sage: b - b - - sage: l. = k.extension(x - 1/a0); l - Number Field in b with defining polynomial x + 1/2*a0 over its base field - sage: l.pari_rnf() -- [x, [4, -x^3 - x^2 - 7*x - 3, -x^3 + x^2 - 7*x + 3, 2*x^3 + 10*x], ..., [x^4 + 6*x^2 + 1, -x, -1, y^4 + 6*y^2 + 1, x], [0, 0]] -+ [x, [4, -x^3 + x^2 - 7*x + 3, -2*x^3 - 10*x, x^3 + x^2 + 7*x + 3], ..., [x^4 + 6*x^2 + 1, -x, -1, y^4 + 6*y^2 + 1, x], [0, 0]] - sage: b - -1/2*a0 - -@@ -1624,9 +1624,9 @@ def _pari_relative_structure(self): - sage: K. = NumberField(x^2 + 1) - sage: L. = K.extension(x^2 - 1/2) - sage: L._pari_relative_structure() -- (x^2 + Mod(-y, y^2 + 1), -- Mod(Mod(1/2*y - 1/2, y^2 + 1)*x, x^2 + Mod(-y, y^2 + 1)), -- Mod(Mod(-y - 1, y^2 + 1)*x, Mod(1, y^2 + 1)*x^2 + Mod(-1/2, y^2 + 1))) -+ (x^2 + Mod(y, y^2 + 1), -+ Mod(Mod(-1/2*y - 1/2, y^2 + 1)*x, x^2 + Mod(y, y^2 + 1)), -+ Mod(Mod(y - 1, y^2 + 1)*x, x^2 + Mod(-1/2, y^2 + 1))) - - An example where both fields are defined by non-integral or - non-monic polynomials:: -@@ -1926,7 +1926,7 @@ def absolute_polynomial(self): - sage: k.relative_polynomial() - x^2 + 1/3 - sage: k.pari_relative_polynomial() -- x^2 + Mod(y, y^2 + 1)*x - 1 -+ x^2 + Mod(-y, y^2 + 1)*x - 1 - """ - return QQ['x'](self._pari_rnfeq()[0]) - -@@ -2699,7 +2699,7 @@ def uniformizer(self, P, others='positive'): - sage: x = polygen(ZZ, 'x') - sage: K. = NumberField([x^2 + 23, x^2 - 3]) - sage: P = K.prime_factors(5)[0]; P -- Fractional ideal (5, 1/2*a + b - 5/2) -+ Fractional ideal (5, -1/2*a + b + 5/2) - sage: u = K.uniformizer(P) - sage: u.valuation(P) - 1 -diff --git a/src/sage/rings/number_field/order.py b/src/sage/rings/number_field/order.py -index fd5662048df..d1c055bf549 100644 ---- a/src/sage/rings/number_field/order.py -+++ b/src/sage/rings/number_field/order.py -@@ -2935,7 +2935,7 @@ def GaussianIntegers(names='I', latex_name='i'): - sage: ZZI - Gaussian Integers generated by I in Number Field in I with defining polynomial x^2 + 1 with I = 1*I - sage: factor(3 + I) -- (-I) * (I + 1) * (2*I + 1) -+ (-2*I - 1) * (I - 1) - sage: CC(I) - 1.00000000000000*I - sage: I.minpoly() -@@ -2966,7 +2966,7 @@ def EisensteinIntegers(names='omega'): - with defining polynomial x^2 + x + 1 - with omega = -0.50000000000000000? + 0.866025403784439?*I - sage: factor(3 + omega) -- (-1) * (-omega - 3) -+ (omega) * (-3*omega - 2) - sage: CC(omega) - -0.500000000000000 + 0.866025403784439*I - sage: omega.minpoly() -diff --git a/src/sage/rings/number_field/selmer_group.py b/src/sage/rings/number_field/selmer_group.py -index 283db17c84e..a940c95731d 100644 ---- a/src/sage/rings/number_field/selmer_group.py -+++ b/src/sage/rings/number_field/selmer_group.py -@@ -71,7 +71,7 @@ def _ideal_generator(I): - - sage: K. = QuadraticField(-11) - sage: [_ideal_generator(K.prime_above(p)) for p in primes(25)] -- [2, 1/2*a - 1/2, -1/2*a - 3/2, 7, -a, 13, 17, 19, 1/2*a + 9/2] -+ [2, 1/2*a - 1/2, -1/2*a - 3/2, 7, a, 13, 17, 19, 1/2*a + 9/2] - """ - try: - return I.gens_reduced()[0] -@@ -489,9 +489,9 @@ def pSelmerGroup(K, S, p, proof=None, debug=False): - - sage: [K.ideal(g).factor() for g in gens] - [(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1)), -- Fractional ideal (a), -- (Fractional ideal (2, a + 1))^2, -- 1] -+ Fractional ideal (-a), -+ (Fractional ideal (2, a + 1))^2, -+ 1] - - sage: toKS2(10) - (0, 0, 1, 1) -diff --git a/src/sage/rings/polynomial/polynomial_quotient_ring.py b/src/sage/rings/polynomial/polynomial_quotient_ring.py -index 627765cf8f0..627034877f3 100644 ---- a/src/sage/rings/polynomial/polynomial_quotient_ring.py -+++ b/src/sage/rings/polynomial/polynomial_quotient_ring.py -@@ -1430,13 +1430,13 @@ def S_class_group(self, S, proof=True): - sage: R. = K[] - sage: S. = R.quotient(x^2 + 23) - sage: S.S_class_group([]) -- [((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)] -+ [((2, a + 1, -1/2*xbar + 3/2, 1/2*a*xbar - 1/2*a + 1), 6)] - sage: S.S_class_group([K.ideal(3, a-1)]) - [] - sage: S.S_class_group([K.ideal(2, a+1)]) - [] - sage: S.S_class_group([K.ideal(a)]) -- [((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)] -+ [((2, a + 1, -1/2*xbar + 3/2, 1/2*a*xbar - 1/2*a + 1), 6)] - - Now we take an example over a nontrivial base with two factors, each - contributing to the class group:: -@@ -1496,14 +1496,14 @@ def S_class_group(self, S, proof=True): - sage: C = S.S_class_group([]) - sage: C[:2] - [((1/4*xbar^2 + 31/4, -- (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, -- 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -- -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8), -+ (1/8*a + 1/8)*xbar^2 + 31/8*a + 31/8, -+ -1/16*xbar^3 + 3/16*xbar^2 - 31/16*xbar + 93/16, -+ 1/16*a*xbar^3 + (-1/16*a + 1/8)*xbar^2 + 31/16*a*xbar - 31/16*a + 31/8), - 6), - ((-1/4*xbar^2 - 23/4, -- (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -- -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, -- 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), -+ (-1/8*a - 1/8)*xbar^2 - 23/8*a - 23/8, -+ 1/16*xbar^3 + 1/16*xbar^2 + 23/16*xbar + 23/16, -+ -1/16*a*xbar^3 + (1/16*a - 1/8)*xbar^2 - 23/16*a*xbar + 23/16*a - 23/8), - 6)] - sage: C[2][1] - 2 -@@ -1515,11 +1515,11 @@ def S_class_group(self, S, proof=True): - ....: 1/16*a*xbar^3 - 1/16*a*xbar^2 + 23/16*a*xbar - 23/16*a) - sage: gens[0] == expected_gens[0] - True -- sage: gens[1] in (expected_gens[1], expected_gens[1]/2 + expected_gens[0]/2) -+ sage: gens[1] in (expected_gens[1], expected_gens[1]/2 + expected_gens[0]/2, -expected_gens[1]/2 + expected_gens[0]/2) - True -- sage: gens[2] in (expected_gens[2], expected_gens[2] + expected_gens[0]/2) -+ sage: gens[2] in (expected_gens[2], expected_gens[2] + expected_gens[0]/2, -expected_gens[2] + expected_gens[0]/2) - True -- sage: gens[3] in (expected_gens[3], expected_gens[3] + expected_gens[0]/2) -+ sage: gens[3] in (expected_gens[3], expected_gens[3] + expected_gens[0]/2, -expected_gens[3] + expected_gens[0]/2) - True - """ - fields, isos, iso_classes = self._S_decomposition(tuple(S)) -@@ -1612,7 +1612,7 @@ def class_group(self, proof=True): - sage: R. = K[] - sage: S. = R.quotient(x^2 + 23) - sage: S.class_group() -- [((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)] -+ [((2, a + 1, -1/2*xbar + 3/2, 1/2*a*xbar - 1/2*a + 1), 6)] - - Here is an example of a product of number fields, both of which - contribute to the class group:: -@@ -1712,19 +1712,19 @@ def S_units(self, S, proof=True): - with defining polynomial x^2 + 3 with a = 1.732050807568878?*I - with modulus y^3 + 5 - sage: [u for u, o in L.S_units([]) if o is Infinity] -- [(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, -- 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2] -+ [(-1/3*a - 1)*b^2 - 4/3*a*b - 4/3*a + 3, -+ (-1/3*a - 1)*b^2 + (2/3*a - 2)*b + 13/6*a - 1/2] - sage: [u for u, o in L.S_units([K.ideal(1/2*a - 3/2)]) - ....: if o is Infinity] - [(-1/6*a - 1/2)*b^2 + (1/3*a - 1)*b + 4/3*a, -- (-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, -- 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2] -+ (-1/3*a - 1)*b^2 - 4/3*a*b - 4/3*a + 3, -+ (-1/3*a - 1)*b^2 + (2/3*a - 2)*b + 13/6*a - 1/2] - sage: [u for u, o in L.S_units([K.ideal(2)]) if o is Infinity] - [(1/2*a - 1/2)*b^2 + (a + 1)*b + 3, -- (1/6*a + 1/2)*b^2 + (-1/3*a + 1)*b - 5/6*a + 1/2, - (1/6*a + 1/2)*b^2 + (-1/3*a + 1)*b - 5/6*a - 1/2, -- (-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, -- 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2] -+ 1/3*a*b^2 + (1/3*a + 1)*b - 1/6*a + 3/2, -+ (-1/3*a - 1)*b^2 - 4/3*a*b - 4/3*a + 3, -+ (-1/3*a - 1)*b^2 + (2/3*a - 2)*b + 13/6*a - 1/2] - - Note that all the returned values live where we expect them to:: - -@@ -1809,8 +1809,8 @@ def units(self, proof=True): - with defining polynomial x^2 + 3 with a = 1.732050807568878?*I - with modulus y^3 + 5 - sage: [u for u, o in L.units() if o is Infinity] -- [(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, -- 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2] -+ [(-1/3*a - 1)*b^2 - 4/3*a*b - 4/3*a + 3, -+ (-1/3*a - 1)*b^2 + (2/3*a - 2)*b + 13/6*a - 1/2] - sage: L. = K.extension(y^3 + 5) - sage: L.unit_group() - Unit group with structure C6 x Z x Z of -@@ -1818,8 +1818,8 @@ def units(self, proof=True): - sage: L.unit_group().gens() # abstract generators - (u0, u1, u2) - sage: L.unit_group().gens_values()[1:] -- [(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, -- 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2] -+ [(-1/3*a - 1)*b^2 - 4/3*a*b - 4/3*a + 3, -+ (-1/3*a - 1)*b^2 + (2/3*a - 2)*b + 13/6*a - 1/2] - - Note that all the returned values live where we expect them to:: - -@@ -1877,7 +1877,7 @@ def selmer_generators(self, S, m, proof=True): - sage: D.selmer_generators([K.ideal(2, -a + 1), - ....: K.ideal(3, a + 1), - ....: K.ideal(a)], 3) -- [2, a + 1, -a] -+ [2, a + 1, a] - """ - fields, isos, iso_classes = self._S_decomposition(tuple(S)) - n = len(fields) -diff --git a/src/sage/rings/qqbar.py b/src/sage/rings/qqbar.py -index 050ab750117..4b6980c9143 100644 ---- a/src/sage/rings/qqbar.py -+++ b/src/sage/rings/qqbar.py -@@ -2777,11 +2777,12 @@ def number_field_elements_from_algebraics(numbers, minimal=False, - To: Algebraic Real Field - Defn: a |--> 1.732050807568878?) - sage: number_field_elements_from_algebraics((rt2,qqI)) # needs sage.symbolic -- (Number Field in a with defining polynomial y^4 + 1, [-a^3 + a, a^2], -+ (Number Field in a with defining polynomial y^4 + 1, -+ [a^3 - a, a^2], - Ring morphism: -- From: Number Field in a with defining polynomial y^4 + 1 -- To: Algebraic Field -- Defn: a |--> 0.7071067811865475? + 0.7071067811865475?*I) -+ From: Number Field in a with defining polynomial y^4 + 1 -+ To: Algebraic Field -+ Defn: a |--> -0.7071067811865475? - 0.7071067811865475?*I) - - Note that for the first example, where \sage does not realize that - the number is real, we get a homomorphism to ``QQbar``:: -@@ -4660,8 +4661,7 @@ def _exact_field(self): - Number Field in a with defining polynomial y^4 - 20*y^2 + 81 - with a in -3.789313782671036? - sage: (QQbar(7)^(3/5))._exact_field() -- Number Field in a with defining polynomial -- y^5 - 2*y^4 - 18*y^3 + 38*y^2 + 82*y - 181 with a in 2.554256611698490? -+ Number Field in a with defining polynomial y^5 - 7 with a in 1.475773161594552? - """ - sd = self._descr - if isinstance(sd, (ANRational, ANExtensionElement)): -@@ -4681,7 +4681,7 @@ def _exact_value(self): - sage: (sqrt(QQbar(2)) + sqrt(QQbar(19)))._exact_value() - -1/9*a^3 + a^2 + 11/9*a - 10 where a^4 - 20*a^2 + 81 = 0 and a in -3.789313782671036? - sage: (QQbar(7)^(3/5))._exact_value() -- 2*a^4 + 2*a^3 - 34*a^2 - 17*a + 150 where a^5 - 2*a^4 - 18*a^3 + 38*a^2 + 82*a - 181 = 0 and a in 2.554256611698490? -+ a^3 where a^5 - 7 = 0 and a in 1.475773161594552? - """ - sd = self._descr - if isinstance(sd, (ANRational, ANExtensionElement)): -@@ -7925,8 +7925,8 @@ def handle_sage_input(self, sib, coerce, is_qqbar): - sage: sage_input(v, verify=True) - # Verified - R. = QQ[] -- v = QQbar.polynomial_root(AA.common_polynomial(y^8 - y^7 + y^5 - y^4 + y^3 - y + 1), CIF(RIF(RR(0.91354545764260087), RR(0.91354545764260098)), RIF(RR(0.40673664307580015), RR(0.40673664307580021)))) -- v^5 + v^3 -+ v = QQbar.polynomial_root(AA.common_polynomial(y^8 - y^7 + y^5 - y^4 + y^3 - y + 1), CIF(RIF(RR(0.66913060635885813), RR(0.66913060635885824)), RIF(-RR(0.74314482547739424), -RR(0.74314482547739413)))) -+ v^6 + v^5 - sage: v = QQbar(sqrt(AA(2))) - sage: v.exactify() - sage: sage_input(v, verify=True) -diff --git a/src/sage/rings/rational.pyx b/src/sage/rings/rational.pyx -index 68ee004a251..d1def05ac18 100644 ---- a/src/sage/rings/rational.pyx -+++ b/src/sage/rings/rational.pyx -@@ -1558,7 +1558,7 @@ cdef class Rational(sage.structure.element.FieldElement): - EXAMPLES:: - - sage: QQ(2)._bnfisnorm(QuadraticField(-1, 'i')) # needs sage.rings.number_field -- (i + 1, 1) -+ (i - 1, 1) - sage: x = polygen(QQ, 'x') - sage: 7._bnfisnorm(NumberField(x^3 - 2, 'b')) # needs sage.rings.number_field - (1, 7) -diff --git a/src/sage/schemes/affine/affine_morphism.py b/src/sage/schemes/affine/affine_morphism.py -index baa58aeb639..ca414d6d60c 100644 ---- a/src/sage/schemes/affine/affine_morphism.py -+++ b/src/sage/schemes/affine/affine_morphism.py -@@ -1158,13 +1158,11 @@ def reduce_base_field(self): - sage: H = End(A) - sage: f = H([QQbar(3^(1/3))*x^2 + QQbar(sqrt(-2))]) # needs sage.symbolic - sage: f.reduce_base_field() # needs sage.symbolic -- Scheme endomorphism of Affine Space of dimension 1 over Number -- Field in a with defining polynomial y^6 + 6*y^4 - 6*y^3 + 12*y^2 + 36*y + 17 -- with a = 1.442249570307409? + 1.414213562373095?*I -+ Scheme endomorphism of Affine Space of dimension 1 over Number Field in a with defining polynomial y^6 + 6*y^4 - 6*y^3 + 12*y^2 + 36*y + 17 with a = 1.442249570307409? - 1.414213562373095?*I - Defn: Defined on coordinates by sending (x) to - ((-48/269*a^5 + 27/269*a^4 - 320/269*a^3 + 468/269*a^2 - 772/269*a -- - 1092/269)*x^2 + (48/269*a^5 - 27/269*a^4 + 320/269*a^3 - 468/269*a^2 -- + 1041/269*a + 1092/269)) -+ - 1092/269)*x^2 + (-48/269*a^5 + 27/269*a^4 - 320/269*a^3 + 468/269*a^2 -+ - 1041/269*a - 1092/269)) - - :: - -diff --git a/src/sage/schemes/berkovich/berkovich_space.py b/src/sage/schemes/berkovich/berkovich_space.py -index f5455937b43..1330c408f4a 100644 ---- a/src/sage/schemes/berkovich/berkovich_space.py -+++ b/src/sage/schemes/berkovich/berkovich_space.py -@@ -201,7 +201,7 @@ def ideal(self): - sage: ideal = A.prime_above(5) - sage: B = Berkovich_Cp_Projective(A, ideal) - sage: B.ideal() -- Fractional ideal (-a - 2) -+ Fractional ideal (2*a - 1) - - :: - -diff --git a/src/sage/schemes/elliptic_curves/ell_field.py b/src/sage/schemes/elliptic_curves/ell_field.py -index 376568cc90b..63ef460af6c 100644 ---- a/src/sage/schemes/elliptic_curves/ell_field.py -+++ b/src/sage/schemes/elliptic_curves/ell_field.py -@@ -902,7 +902,7 @@ def division_field(self, n, names='t', map=False, **kwds): - by y^2 = x^3 + 5*a0*x^2 + (-200*a0^2)*x + (-42000*a0^2+42000*a0+126000) - over Number Field in a0 with defining polynomial x^3 - 3*x^2 + 3*x + 9 - sage: K. = E.division_field(3, simplify_all=True); K -- Number Field in b with defining polynomial x^12 - 25*x^10 + 130*x^8 + 645*x^6 + 1050*x^4 + 675*x^2 + 225 -+ Number Field in b with defining polynomial x^12 + 5*x^10 + 40*x^8 + 315*x^6 + 750*x^4 + 675*x^2 + 2025 - - Some higher-degree examples:: - -diff --git a/src/sage/schemes/elliptic_curves/ell_local_data.py b/src/sage/schemes/elliptic_curves/ell_local_data.py -index 7434659b5a2..df076ed62b6 100644 ---- a/src/sage/schemes/elliptic_curves/ell_local_data.py -+++ b/src/sage/schemes/elliptic_curves/ell_local_data.py -@@ -1161,7 +1161,7 @@ def check_prime(K, P): - sage: check_prime(K, a + 1) - Fractional ideal (a + 1) - sage: [check_prime(K, P) for P in K.primes_above(31)] -- [Fractional ideal (5/2*a + 1/2), Fractional ideal (5/2*a - 1/2)] -+ [Fractional ideal (-5/2*a - 1/2), Fractional ideal (-5/2*a + 1/2)] - sage: L. = NumberField(x^2 + 3) - sage: check_prime(K, L.ideal(5)) - Traceback (most recent call last): -diff --git a/src/sage/schemes/elliptic_curves/ell_number_field.py b/src/sage/schemes/elliptic_curves/ell_number_field.py -index 518fda03481..e36bf28499f 100644 ---- a/src/sage/schemes/elliptic_curves/ell_number_field.py -+++ b/src/sage/schemes/elliptic_curves/ell_number_field.py -@@ -229,9 +229,9 @@ def simon_two_descent(self, verbose=0, lim1=2, lim3=4, limtriv=2, - sage: E == loads(dumps(E)) - True - sage: E.simon_two_descent() -- (2, 2, [(0 : 0 : 1), (1/18*a + 7/18 : -5/54*a - 17/54 : 1)]) -+ (2, 2, [(0 : 0 : 1), (1/8*a + 5/8 : -3/16*a - 7/16 : 1)]) - sage: E.simon_two_descent(lim1=5, lim3=5, limtriv=10, maxprob=7, limbigprime=10) -- (2, 2, [(-1 : 0 : 1), (-2 : -1/2*a - 1/2 : 1)]) -+ (2, 2, [(-1 : 0 : 1), (1/2*a - 5/2 : -1/2*a - 13/2 : 1)]) - - :: - -@@ -277,7 +277,7 @@ def simon_two_descent(self, verbose=0, lim1=2, lim3=4, limtriv=2, - sage: E.simon_two_descent() # long time (4s on sage.math, 2013) - (3, - 3, -- [(1/8*zeta43_0^2 - 3/8*zeta43_0 - 1/4 : -5/16*zeta43_0^2 + 7/16*zeta43_0 + 1/8 : 1), -+ [(-1/2*zeta43_0^2 - 1/2*zeta43_0 + 7 : -3/2*zeta43_0^2 - 5/2*zeta43_0 + 18 : 1), - (0 : 0 : 1)]) - """ - verbose = int(verbose) -@@ -873,7 +873,7 @@ def local_data(self, P=None, proof=None, algorithm='pari', globally=False): - sage: K. = NumberField(x^2 + 1) - sage: E = EllipticCurve([1 + i, 0, 1, 0, 0]) - sage: E.local_data() -- [Local data at Fractional ideal (2*i + 1): -+ [Local data at Fractional ideal (-2*i - 1): - Reduction type: bad non-split multiplicative - Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 - over Number Field in i with defining polynomial x^2 + 1 -@@ -881,7 +881,7 @@ def local_data(self, P=None, proof=None, algorithm='pari', globally=False): - Conductor exponent: 1 - Kodaira Symbol: I1 - Tamagawa Number: 1, -- Local data at Fractional ideal (-2*i + 3): -+ Local data at Fractional ideal (3*i + 2): - Reduction type: bad split multiplicative - Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 - over Number Field in i with defining polynomial x^2 + 1 -@@ -899,7 +899,7 @@ def local_data(self, P=None, proof=None, algorithm='pari', globally=False): - Kodaira Symbol: I0 - Tamagawa Number: 1 - sage: E.local_data(2*i + 1) -- Local data at Fractional ideal (2*i + 1): -+ Local data at Fractional ideal (-2*i - 1): - Reduction type: bad non-split multiplicative - Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 - over Number Field in i with defining polynomial x^2 + 1 -@@ -1457,8 +1457,10 @@ def kodaira_symbol(self, P, proof=None): - sage: K. = NumberField(x^2 - 5) - sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875]) - sage: bad_primes = E.discriminant().support(); bad_primes -- [Fractional ideal (-a), Fractional ideal (7/2*a - 81/2), -- Fractional ideal (-a - 52), Fractional ideal (2)] -+ [Fractional ideal (-a), -+ Fractional ideal (-7/2*a + 81/2), -+ Fractional ideal (-a - 52), -+ Fractional ideal (2)] - sage: [E.kodaira_symbol(P) for P in bad_primes] - [I0, I1, I1, II] - sage: K. = QuadraticField(-11) -@@ -1484,10 +1486,10 @@ def conductor(self): - - sage: K. = NumberField(x^2 + 1) - sage: EllipticCurve([i, i - 1, i + 1, 24*i + 15, 14*i + 35]).conductor() -- Fractional ideal (21*i - 3) -+ Fractional ideal (3*i + 21) - sage: K. = NumberField(x^2 - x + 3) - sage: EllipticCurve([1 + a, -1 + a, 1 + a, -11 + a, 5 - 9*a]).conductor() -- Fractional ideal (-6*a) -+ Fractional ideal (6*a) - - A not so well known curve with everywhere good reduction:: - -@@ -2585,8 +2587,8 @@ def isogeny_class(self, reducible_primes=None, algorithm='Billerey', minimal_mod - sage: [E1.ainvs() for E1 in C] - [(0, 0, 0, 0, -27), - (0, 0, 0, 0, 1), -- (i + 1, i, i + 1, -i + 3, 4*i), -- (i + 1, i, i + 1, -i + 33, -58*i)] -+ (i + 1, i, 0, 3, -i), -+ (i + 1, i, 0, 33, 91*i)] - - The matrix of degrees of cyclic isogenies between curves:: - -@@ -2617,13 +2619,13 @@ class :class:`EllipticCurveIsogeny` allowed composition. In - sage: [((i,j), isogs[i][j].x_rational_map()) - ....: for i in range(4) for j in range(4) if isogs[i][j] != 0] - [((0, 1), (1/9*x^3 - 12)/x^2), -- ((0, 3), (-1/2*i*x^2 + i*x - 12*i)/(x - 3)), -+ ((0, 3), (1/2*i*x^2 - 2*i*x + 15*i)/(x - 3)), - ((1, 0), (x^3 + 4)/x^2), -- ((1, 2), (-1/2*i*x^2 - i*x - 2*i)/(x + 1)), -- ((2, 1), (1/2*i*x^2 - x)/(x + 3/2*i)), -- ((2, 3), (x^3 + 4*i*x^2 - 10*x - 10*i)/(x^2 + 4*i*x - 4)), -- ((3, 0), (1/2*i*x^2 + x + 4*i)/(x - 5/2*i)), -- ((3, 2), (1/9*x^3 - 4/3*i*x^2 - 34/3*x + 226/9*i)/(x^2 - 8*i*x - 16))] -+ ((1, 2), (1/2*i*x^2 + i)/(x + 1)), -+ ((2, 1), (-1/2*i*x^2 - 1/2*i)/(x - 1/2*i)), -+ ((2, 3), (x^3 - 2*i*x^2 - 7*x + 4*i)/(x^2 - 2*i*x - 1)), -+ ((3, 0), (-1/2*i*x^2 + 2*x - 5/2*i)/(x + 7/2*i)), -+ ((3, 2), (1/9*x^3 + 2/3*i*x^2 - 13/3*x - 116/9*i)/(x^2 + 10*i*x - 25))] - - The isogeny class may be visualized by obtaining its graph and - plotting it:: -@@ -3104,10 +3106,10 @@ def is_isogenous(self, other, proof=True, maxnorm=100): - sage: K. = QuadraticField(-1) - sage: E1 = EllipticCurve([i + 1, 0, 1, -240*i - 400, -2869*i - 2627]) - sage: E1.conductor() -- Fractional ideal (-4*i - 7) -+ Fractional ideal (4*i + 7) - sage: E2 = EllipticCurve([1+i,0,1,0,0]) - sage: E2.conductor() -- Fractional ideal (-4*i - 7) -+ Fractional ideal (4*i + 7) - sage: E1.is_isogenous(E2) # long time - True - sage: E1.is_isogenous(E2, proof=False) # faster (~170ms) -@@ -3434,8 +3436,8 @@ def lll_reduce(self, points, height_matrix=None, precision=None): - sage: Q = E(0,-1) - sage: E.lll_reduce([P,Q]) - ( -- [0 1] -- [(0 : -1 : 1), (-2 : -1/2*a - 1/2 : 1)], [1 0] -+ [ 0 -1] -+ [(0 : -1 : 1), (-2 : 1/2*a - 1/2 : 1)], [ 1 0] - ) - - :: -@@ -3446,9 +3448,10 @@ def lll_reduce(self, points, height_matrix=None, precision=None): - ....: E.point([-17/18*a - 1/9, -109/108*a - 277/108])] - sage: E.lll_reduce(points) - ( -- [(-a + 4 : -3*a + 7 : 1), (-17/18*a - 1/9 : 109/108*a + 277/108 : 1)], -- [ 1 0] -- [ 1 -1] -+ [(-a + 4 : -3*a + 7 : 1), (-17/18*a - 1/9 : -109/108*a - 277/108 : 1)], -+ -+ [1 0] -+ [1 1] - ) - """ - r = len(points) -diff --git a/src/sage/schemes/elliptic_curves/ell_point.py b/src/sage/schemes/elliptic_curves/ell_point.py -index 1d980d60666..7c18a464559 100644 ---- a/src/sage/schemes/elliptic_curves/ell_point.py -+++ b/src/sage/schemes/elliptic_curves/ell_point.py -@@ -3052,9 +3052,9 @@ def has_good_reduction(self, P=None): - sage: E = EllipticCurve(K, [0,1,0,-160,308]) - sage: P = E(26, -120) - sage: E.discriminant().support() -- [Fractional ideal (i + 1), -- Fractional ideal (-i - 2), -- Fractional ideal (2*i + 1), -+ [Fractional ideal (i - 1), -+ Fractional ideal (2*i - 1), -+ Fractional ideal (-2*i - 1), - Fractional ideal (3)] - sage: [E.tamagawa_exponent(p) for p in E.discriminant().support()] - [1, 4, 4, 4] -diff --git a/src/sage/schemes/elliptic_curves/ell_rational_field.py b/src/sage/schemes/elliptic_curves/ell_rational_field.py -index 134531ad1a5..27b33b46e67 100644 ---- a/src/sage/schemes/elliptic_curves/ell_rational_field.py -+++ b/src/sage/schemes/elliptic_curves/ell_rational_field.py -@@ -1863,7 +1863,7 @@ def simon_two_descent(self, verbose=0, lim1=5, lim3=50, limtriv=3, - sage: E = EllipticCurve('389a1') - sage: E._known_points = [] # clear cached points - sage: E.simon_two_descent() -- (2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)]) -+ (2, 2, [(-3/4 : 7/8 : 1), (5/4 : 5/8 : 1)]) - sage: E = EllipticCurve('5077a1') - sage: E.simon_two_descent() - (3, 3, [(1 : 0 : 1), (2 : 0 : 1), (0 : 2 : 1)]) -diff --git a/src/sage/schemes/elliptic_curves/gal_reps_number_field.py b/src/sage/schemes/elliptic_curves/gal_reps_number_field.py -index 7824893b05f..609aab5f4bf 100644 ---- a/src/sage/schemes/elliptic_curves/gal_reps_number_field.py -+++ b/src/sage/schemes/elliptic_curves/gal_reps_number_field.py -@@ -800,17 +800,17 @@ def deg_one_primes_iter(K, principal_only=False): - [Fractional ideal (2, a + 1), - Fractional ideal (3, a + 1), - Fractional ideal (3, a + 2), -- Fractional ideal (a), -+ Fractional ideal (-a), - Fractional ideal (7, a + 3), - Fractional ideal (7, a + 4)] - sage: it = deg_one_primes_iter(K, True) - sage: [next(it) for _ in range(6)] -- [Fractional ideal (a), -- Fractional ideal (-2*a + 3), -- Fractional ideal (2*a + 3), -+ [Fractional ideal (-a), -+ Fractional ideal (2*a - 3), -+ Fractional ideal (-2*a - 3), - Fractional ideal (a + 6), - Fractional ideal (a - 6), -- Fractional ideal (-3*a + 4)] -+ Fractional ideal (3*a - 4)] - """ - # imaginary quadratic fields have no principal primes of norm < disc / 4 - start = K.discriminant().abs() // 4 if principal_only and K.signature() == (0,1) else 2 -diff --git a/src/sage/schemes/elliptic_curves/gp_simon.py b/src/sage/schemes/elliptic_curves/gp_simon.py -index 6be377e2f74..4134ae1b7a6 100644 ---- a/src/sage/schemes/elliptic_curves/gp_simon.py -+++ b/src/sage/schemes/elliptic_curves/gp_simon.py -@@ -49,7 +49,7 @@ def simon_two_descent(E, verbose=0, lim1=None, lim3=None, limtriv=None, - doctest:warning...: - DeprecationWarning: please use the 2-descent algorithm over QQ inside pari - See https://github.com/sagemath/sage/issues/38461 for details. -- (2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)]) -+ (2, 2, [(-3/4 : 7/8 : 1), (5/4 : 5/8 : 1)]) - - TESTS:: - -diff --git a/src/sage/schemes/elliptic_curves/isogeny_class.py b/src/sage/schemes/elliptic_curves/isogeny_class.py -index 13edc68a022..a83fd8705ac 100644 ---- a/src/sage/schemes/elliptic_curves/isogeny_class.py -+++ b/src/sage/schemes/elliptic_curves/isogeny_class.py -@@ -223,8 +223,8 @@ def _repr_(self): - sage: C.curves - [Elliptic Curve defined by y^2 = x^3 + (-27) over Number Field in i with defining polynomial x^2 + 1 with i = 1*I, - Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in i with defining polynomial x^2 + 1 with i = 1*I, -- Elliptic Curve defined by y^2 + (i+1)*x*y + (i+1)*y = x^3 + i*x^2 + (-i+3)*x + 4*i over Number Field in i with defining polynomial x^2 + 1 with i = 1*I, -- Elliptic Curve defined by y^2 + (i+1)*x*y + (i+1)*y = x^3 + i*x^2 + (-i+33)*x + (-58*i) over Number Field in i with defining polynomial x^2 + 1 with i = 1*I] -+ Elliptic Curve defined by y^2 + (i+1)*x*y = x^3 + i*x^2 + 3*x + (-i) over Number Field in i with defining polynomial x^2 + 1 with i = 1*I, -+ Elliptic Curve defined by y^2 + (i+1)*x*y = x^3 + i*x^2 + 33*x + 91*i over Number Field in i with defining polynomial x^2 + 1 with i = 1*I] - """ - if self._label: - return "Elliptic curve isogeny class %s" % (self._label) -@@ -615,8 +615,8 @@ def __init__(self, E, reducible_primes=None, algorithm='Billerey', minimal_model - sage: [E1.ainvs() for E1 in C] - [(0, 0, 0, 0, -27), - (0, 0, 0, 0, 1), -- (i + 1, i, i + 1, -i + 3, 4*i), -- (i + 1, i, i + 1, -i + 33, -58*i)] -+ (i + 1, i, 0, 3, -i), -+ (i + 1, i, 0, 33, 91*i)] - - The matrix of degrees of cyclic isogenies between curves:: - -@@ -647,13 +647,13 @@ class :class:`EllipticCurveIsogeny` allowed composition. In - sage: [((i,j), isogs[i][j].x_rational_map()) - ....: for i in range(4) for j in range(4) if isogs[i][j] != 0] - [((0, 1), (1/9*x^3 - 12)/x^2), -- ((0, 3), (-1/2*i*x^2 + i*x - 12*i)/(x - 3)), -+ ((0, 3), (1/2*i*x^2 - 2*i*x + 15*i)/(x - 3)), - ((1, 0), (x^3 + 4)/x^2), -- ((1, 2), (-1/2*i*x^2 - i*x - 2*i)/(x + 1)), -- ((2, 1), (1/2*i*x^2 - x)/(x + 3/2*i)), -- ((2, 3), (x^3 + 4*i*x^2 - 10*x - 10*i)/(x^2 + 4*i*x - 4)), -- ((3, 0), (1/2*i*x^2 + x + 4*i)/(x - 5/2*i)), -- ((3, 2), (1/9*x^3 - 4/3*i*x^2 - 34/3*x + 226/9*i)/(x^2 - 8*i*x - 16))] -+ ((1, 2), (1/2*i*x^2 + i)/(x + 1)), -+ ((2, 1), (-1/2*i*x^2 - 1/2*i)/(x - 1/2*i)), -+ ((2, 3), (x^3 - 2*i*x^2 - 7*x + 4*i)/(x^2 - 2*i*x - 1)), -+ ((3, 0), (-1/2*i*x^2 + 2*x - 5/2*i)/(x + 7/2*i)), -+ ((3, 2), (1/9*x^3 + 2/3*i*x^2 - 13/3*x - 116/9*i)/(x^2 + 10*i*x - 25))] - - sage: K. = QuadraticField(-1) - sage: E = EllipticCurve([1+i, -i, i, 1, 0]) -diff --git a/src/sage/schemes/elliptic_curves/isogeny_small_degree.py b/src/sage/schemes/elliptic_curves/isogeny_small_degree.py -index 6a0194fb0f9..90f7382a94e 100644 ---- a/src/sage/schemes/elliptic_curves/isogeny_small_degree.py -+++ b/src/sage/schemes/elliptic_curves/isogeny_small_degree.py -@@ -886,15 +886,15 @@ def isogenies_5_0(E, minimal_models=True): - from Elliptic Curve defined by y^2 + y = x^3 - over Number Field in a with defining polynomial x^6 - 320*x^3 - 320 - to Elliptic Curve defined by -- y^2 + y = x^3 + (241565/32*a^5-362149/48*a^4+180281/24*a^3-9693307/4*a^2+14524871/6*a-7254985/3)*x -- + (1660391123/192*a^5-829315373/96*a^4+77680504/9*a^3-66622345345/24*a^2+33276655441/12*a-24931615912/9) -+ y^2 + y = x^3 + (643/8*a^5-15779/48*a^4-32939/24*a^3-71989/2*a^2+214321/6*a-112115/3)*x -+ + (2901961/96*a^5+4045805/48*a^4+12594215/18*a^3-30029635/6*a^2+15341626/3*a-38944312/9) - over Number Field in a with defining polynomial x^6 - 320*x^3 - 320, - Isogeny of degree 5 - from Elliptic Curve defined by y^2 + y = x^3 - over Number Field in a with defining polynomial x^6 - 320*x^3 - 320 - to Elliptic Curve defined by -- y^2 + y = x^3 + (47519/32*a^5-72103/48*a^4+32939/24*a^3-1909753/4*a^2+2861549/6*a-1429675/3)*x -- + (-131678717/192*a^5+65520419/96*a^4-12594215/18*a^3+5280985135/24*a^2-2637787519/12*a+1976130088/9) -+ y^2 + y = x^3 + (-1109/8*a^5-53873/48*a^4-180281/24*a^3-14491/2*a^2+35899/6*a-43745/3)*x -+ + (-17790679/96*a^5-60439571/48*a^4-77680504/9*a^3+1286245/6*a^2-4961854/3*a-73854632/9) - over Number Field in a with defining polynomial x^6 - 320*x^3 - 320] - """ - F = E.base_field() -diff --git a/src/sage/schemes/plane_conics/con_number_field.py b/src/sage/schemes/plane_conics/con_number_field.py -index e09a1f60262..2b084b57dc6 100644 ---- a/src/sage/schemes/plane_conics/con_number_field.py -+++ b/src/sage/schemes/plane_conics/con_number_field.py -@@ -121,7 +121,7 @@ def has_rational_point(self, point=False, obstruction=False, - sage: K. = QuadraticField(-1) - sage: C = Conic(K, [1, 3, -5]) - sage: C.has_rational_point(point=True, obstruction=True) -- (False, Fractional ideal (-i - 2)) -+ (False, Fractional ideal (2*i - 1)) - sage: C.has_rational_point(algorithm='rnfisnorm') - False - sage: C.has_rational_point(algorithm='rnfisnorm', obstruction=True, -@@ -135,7 +135,7 @@ def has_rational_point(self, point=False, obstruction=False, - sage: L. = NumberField(x^3 - 5) - sage: C = Conic(L, [1, 2, -3]) - sage: C.has_rational_point(point=True, algorithm='rnfisnorm') -- (True, (5/3 : -1/3 : 1)) -+ (True, (-5/3 : 1/3 : 1)) - - sage: K. = NumberField(x^4+2) - sage: Conic(QQ, [4,5,6]).has_rational_point() -diff --git a/src/sage/schemes/projective/projective_morphism.py b/src/sage/schemes/projective/projective_morphism.py -index 20031e81a41..fcbb0c01e82 100644 ---- a/src/sage/schemes/projective/projective_morphism.py -+++ b/src/sage/schemes/projective/projective_morphism.py -@@ -928,7 +928,7 @@ def normalize_coordinates(self, **kwds): - Dynamical System of Projective Space of dimension 1 over - Number Field in a with defining polynomial 3*x^2 + 1 - Defn: Defined on coordinates by sending (z : w) to -- ((-3/2*a + 1/2)*z^2 + (-3/2*a + 1/2)*w^2 : (-3/2*a - 3/2)*z*w) -+ ((3/2*a + 1/2)*z^2 + (3/2*a + 1/2)*w^2 : (-3/2*a + 3/2)*z*w) - - :: - -@@ -1728,11 +1728,11 @@ def _number_field_from_algebraics(self): - sage: f._number_field_from_algebraics() # needs sage.symbolic - Scheme endomorphism of Projective Space of dimension 1 over Number - Field in a with defining polynomial y^6 + 6*y^4 - 6*y^3 + 12*y^2 + 36*y + 17 -- with a = 1.442249570307409? + 1.414213562373095?*I -+ with a = 1.442249570307409? - 1.414213562373095?*I - Defn: Defined on coordinates by sending (x : y) to - ((-48/269*a^5 + 27/269*a^4 - 320/269*a^3 + 468/269*a^2 - 772/269*a -- - 1092/269)*x^2 + (48/269*a^5 - 27/269*a^4 + 320/269*a^3 - 468/269*a^2 -- + 1041/269*a + 1092/269)*y^2 : y^2) -+ - 1092/269)*x^2 + (-48/269*a^5 + 27/269*a^4 - 320/269*a^3 + 468/269*a^2 -+ - 1041/269*a - 1092/269)*y^2 : y^2) - - :: - -@@ -1745,12 +1745,12 @@ def _number_field_from_algebraics(self): - Scheme morphism: - From: Projective Space of dimension 1 over Number Field in a - with defining polynomial y^4 + 3*y^2 + 1 -- with a = 0.?e-113 + 0.618033988749895?*I -+ with a = 0.?e-166 + 1.618033988749895?*I - To: Projective Space of dimension 2 over Number Field in a - with defining polynomial y^4 + 3*y^2 + 1 -- with a = 0.?e-113 + 0.618033988749895?*I -+ with a = 0.?e-166 + 1.618033988749895?*I - Defn: Defined on coordinates by sending (x : y) to -- (x^2 + (a^3 + 2*a)*x*y + 3*y^2 : y^2 : (2*a^2 + 3)*x*y) -+ (x^2 + (-a^3 - 2*a)*x*y + 3*y^2 : y^2 : (-2*a^2 - 3)*x*y) - - The following was fixed in :issue:`23808`:: - -diff --git a/src/sage/schemes/projective/projective_point.py b/src/sage/schemes/projective/projective_point.py -index 88ab4eadcfc..95ee97a7d19 100644 ---- a/src/sage/schemes/projective/projective_point.py -+++ b/src/sage/schemes/projective/projective_point.py -@@ -1246,10 +1246,10 @@ def _number_field_from_algebraics(self): - sage: P. = ProjectiveSpace(QQbar, 1) - sage: Q = P([-1/2*QQbar(sqrt(2)) + QQbar(I), 1]) - sage: S = Q._number_field_from_algebraics(); S -- (1/2*a^3 + a^2 - 1/2*a : 1) -+ (-1/2*a^3 + a^2 + 1/2*a : 1) - sage: S.codomain() - Projective Space of dimension 1 over Number Field in a with defining -- polynomial y^4 + 1 with a = 0.7071067811865475? + 0.7071067811865475?*I -+ polynomial y^4 + 1 with a = -0.7071067811865475? - 0.7071067811865475?*I - - The following was fixed in :issue:`23808`:: - -@@ -1259,7 +1259,7 @@ def _number_field_from_algebraics(self): - sage: Q = P([-1/2*QQbar(sqrt(2)) + QQbar(I), 1]);Q - (-0.7071067811865475? + 1*I : 1) - sage: S = Q._number_field_from_algebraics(); S -- (1/2*a^3 + a^2 - 1/2*a : 1) -+ (-1/2*a^3 + a^2 + 1/2*a : 1) - sage: T = S.change_ring(QQbar) # Used to fail - sage: T - (-0.7071067811865475? + 1.000000000000000?*I : 1) -diff --git a/src/sage/structure/factorization.py b/src/sage/structure/factorization.py -index ab3fa717031..b16822791dc 100644 ---- a/src/sage/structure/factorization.py -+++ b/src/sage/structure/factorization.py -@@ -143,17 +143,17 @@ - sage: K. = NumberField(x^2 + 3); K - Number Field in a with defining polynomial x^2 + 3 - sage: f = K.factor(15); f -- (Fractional ideal (1/2*a + 3/2))^2 * (Fractional ideal (5)) -+ (Fractional ideal (-a))^2 * (Fractional ideal (5)) - sage: f.universe() - Monoid of ideals of Number Field in a with defining polynomial x^2 + 3 - sage: f.unit() - Fractional ideal (1) - sage: g = K.factor(9); g -- (Fractional ideal (1/2*a + 3/2))^4 -+ (Fractional ideal (-a))^4 - sage: f.lcm(g) -- (Fractional ideal (1/2*a + 3/2))^4 * (Fractional ideal (5)) -+ (Fractional ideal (-a))^4 * (Fractional ideal (5)) - sage: f.gcd(g) -- (Fractional ideal (1/2*a + 3/2))^2 -+ (Fractional ideal (-a))^2 - sage: f.is_integral() - True - -diff --git a/src/sage/symbolic/constants.py b/src/sage/symbolic/constants.py -index 20a293fbb7b..dac8c4bc833 100644 ---- a/src/sage/symbolic/constants.py -+++ b/src/sage/symbolic/constants.py -@@ -38,8 +38,7 @@ - sage: gap(pi) - pi - sage: gp(pi) -- 3.141592653589793238462643383 # 32-bit -- 3.1415926535897932384626433832795028842 # 64-bit -+ 3.1415926535897932384626433832795028842 - sage: pari(pi) - 3.14159265358979 - sage: kash(pi) # optional - kash -@@ -63,8 +62,7 @@ - sage: RealField(15)(a) # 15 *bits* of precision - 5.316 - sage: gp(a) -- 5.316218116357029426750873360 # 32-bit -- 5.3162181163570294267508733603616328824 # 64-bit -+ 5.3162181163570294267508733603616328824 - sage: print(mathematica(a)) # optional - mathematica - 4 E - --- + Pi -@@ -882,8 +880,7 @@ class Log2(Constant): - sage: maxima(log2).float() - 0.6931471805599453 - sage: gp(log2) -- 0.6931471805599453094172321215 # 32-bit -- 0.69314718055994530941723212145817656807 # 64-bit -+ 0.69314718055994530941723212145817656807 - sage: RealField(150)(2).log() - 0.69314718055994530941723212145817656807550013 - """ -diff --git a/src/sage/symbolic/expression.pyx b/src/sage/symbolic/expression.pyx -index da4d5db908f..3c2f93e3355 100644 ---- a/src/sage/symbolic/expression.pyx -+++ b/src/sage/symbolic/expression.pyx -@@ -9799,8 +9799,7 @@ cdef class Expression(Expression_abc): - :: - - sage: gp('gamma(1+I)') -- 0.4980156681183560427136911175 - 0.1549498283018106851249551305*I # 32-bit -- 0.49801566811835604271369111746219809195 - 0.15494982830181068512495513048388660520*I # 64-bit -+ 0.49801566811835604271369111746219809195 - 0.15494982830181068512495513048388660520*I - - We plot the familiar plot of this log-convex function:: - diff --git a/gnu/packages/sagemath.scm b/gnu/packages/sagemath.scm index b543d4aa534..4f67ef92929 100644 --- a/gnu/packages/sagemath.scm +++ b/gnu/packages/sagemath.scm @@ -360,7 +360,7 @@ database.") (define-public sage (package (name "sage") - (version "10.6.beta7") + (version "10.6.beta9") (source (origin (method git-fetch) (uri (git-reference @@ -369,8 +369,7 @@ database.") (file-name (git-file-name name version)) (sha256 (base32 - "1lr9v38w5ljvrgywyr3hfvw4dmbzqv1cr67dmrfxj3zplrp3qzvy")) - (patches (search-patches "sage-update-pari-gp.patch")))) + "0hj882wbyax5w7kilh6gwczz0gy0gnhpkz0608sn2yzc4r484w2d")))) (build-system pyproject-build-system) (native-inputs (list autoconf automake m4 pkg-config ; for ./bootstrap