mirror of
https://codeberg.org/guix/guix.git
synced 2025-10-02 02:15:12 +00:00
gnu: Add python-imagehash.
* gnu/packages/python-science.scm (python-imagehash): New variable. Co-authored-by: Sharlatan Hellseher <sharlatanus@gmail.com> Signed-off-by: Sharlatan Hellseher <sharlatanus@gmail.com> Change-Id: Ie773b4504d97ac2678e0776a27eb661d909fed47
This commit is contained in:
parent
a7d7a1ec0b
commit
5ff5a2b2cf
1 changed files with 46 additions and 0 deletions
|
@ -253,6 +253,52 @@ numerical software for solving convex second-order cone programs (SOCPs).")
|
||||||
formulas for Python.")
|
formulas for Python.")
|
||||||
(license license:expat)))
|
(license license:expat)))
|
||||||
|
|
||||||
|
(define-public python-imagehash
|
||||||
|
(package
|
||||||
|
(name "python-imagehash")
|
||||||
|
(version "4.3.1")
|
||||||
|
(source
|
||||||
|
(origin
|
||||||
|
(method git-fetch) ;no tests in PyPI
|
||||||
|
(uri (git-reference
|
||||||
|
;; It's an effective and maintained fork of
|
||||||
|
;; <https://github.com/bunchesofdonald/photohash> project, which
|
||||||
|
;; has the latest release in 2016.
|
||||||
|
(url "https://github.com/JohannesBuchner/imagehash")
|
||||||
|
(commit (string-append "v" version))))
|
||||||
|
(file-name (git-file-name name version))
|
||||||
|
(sha256
|
||||||
|
(base32 "1lw9lxzrzy9s5v3xc35vmh97hlyavnla087fp19k77va6v8vbjjf"))))
|
||||||
|
(build-system pyproject-build-system)
|
||||||
|
(native-inputs
|
||||||
|
(list python-pytest
|
||||||
|
python-setuptools
|
||||||
|
python-wheel))
|
||||||
|
(propagated-inputs
|
||||||
|
(list python-numpy
|
||||||
|
python-pillow
|
||||||
|
python-pywavelets
|
||||||
|
python-scipy))
|
||||||
|
(home-page "https://github.com/JohannesBuchner/imagehash")
|
||||||
|
(synopsis "Perceptual Image Hashing library")
|
||||||
|
(description
|
||||||
|
"This package implements a functinoality to tell whether two images look
|
||||||
|
nearly identical. The image hash algorithms (average, perceptual, difference,
|
||||||
|
wavelet) analyse the image structure on luminance (without color information).
|
||||||
|
The color hash algorithm analyses the color distribution and black & gray
|
||||||
|
fractions (without position information).
|
||||||
|
|
||||||
|
Features:
|
||||||
|
@itemize
|
||||||
|
@item average hashing
|
||||||
|
@item perceptual hashing
|
||||||
|
@item difference hashing
|
||||||
|
@item wavelet hashing
|
||||||
|
@item HSV color hashing (colorhash)
|
||||||
|
@item crop-resistant hashing
|
||||||
|
@end itemize")
|
||||||
|
(license license:bsd-2)))
|
||||||
|
|
||||||
(define-public python-osqp
|
(define-public python-osqp
|
||||||
(package
|
(package
|
||||||
(name "python-osqp")
|
(name "python-osqp")
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue