Use primitive-quadify-off-curves to do curve conversion.

This commit is contained in:
belleve 2018-07-24 01:26:10 +08:00
parent b4ba453ad8
commit bae8c1c6c0
9 changed files with 462 additions and 468 deletions

24
.eslintrc.json Normal file
View file

@ -0,0 +1,24 @@
{
"env": {
"node": true,
"commonjs": true,
"es6": true
},
"parserOptions": {
"ecmaVersion": 2018,
"ecmaFeatures": {
"jsx": true,
"experimentalObjectRestSpread": true
}
},
"extends": "eslint:recommended",
"rules": {
"indent": ["error", "tab", { "SwitchCase": 1 }],
"linebreak-style": ["error", "windows"],
"quotes": ["error", "double", { "allowTemplateLiterals": true }],
"semi": ["error", "always"],
"no-var":"error",
"no-console": 0,
"no-constant-condition": ["error", { "checkLoops": false }]
}
}

View file

@ -152,61 +152,63 @@ if (argv.charmap) {
fs.writeFileSync(argv.charmap, JSON.stringify(charmap), "utf8"); fs.writeFileSync(argv.charmap, JSON.stringify(charmap), "utf8");
} }
if (argv.o) { function regulateGlyph(g, skew) {
function regulateGlyph(g, skew) { if (!g.contours) return;
if (!g.contours) return;
// Regulate // Regulate
for (let k = 0; k < g.contours.length; k++) { for (let k = 0; k < g.contours.length; k++) {
const contour = g.contours[k]; const contour = g.contours[k];
for (let p = 0; p < contour.length; p++) { for (let p = 0; p < contour.length; p++) {
contour[p].x += contour[p].y * skew; contour[p].x += contour[p].y * skew;
if (!contour[p].on) continue; if (!contour[p].on) continue;
contour[p].x = Math.round(contour[p].x); contour[p].x = Math.round(contour[p].x);
} }
let offJ = null, let offJ = null,
mx = null; mx = null;
for (let p = 0; p < contour.length; p++) { for (let p = 0; p < contour.length; p++) {
if (!contour[p].on) continue; if (!contour[p].on) continue;
if (offJ) { if (offJ) {
const origx = contour[p].x; const origx = contour[p].x;
const rx = Math.round(contour[p].x * 4) / 4; const rx = Math.round(contour[p].x * 4) / 4;
const origx0 = mx; const origx0 = mx;
const rx0 = contour[offJ - 1].x; const rx0 = contour[offJ - 1].x;
if (origx === origx0) continue; if (origx === origx0) continue;
for (let poff = offJ; poff < p; poff++) { for (let poff = offJ; poff < p; poff++) {
contour[poff].x = contour[poff].x =
((contour[poff].x - origx0) / (origx - origx0)) * (rx - rx0) + rx0; ((contour[poff].x - origx0) / (origx - origx0)) * (rx - rx0) + rx0;
}
} }
mx = contour[p].x;
contour[p].x = Math.round(contour[p].x * 4) / 4;
offJ = p + 1;
}
}
const c1 = [];
for (let k = 0; k < g.contours.length; k++) {
c1.push(Glyph.contourToStandardCubic(g.contours[k]));
}
// De-overlap
g.contours = caryllShapeOps.removeOverlap(c1, 1, 256, true);
// Finalize
Glyph.prototype.cleanup.call(g, 0.1);
g.contours = c2q.contours(g.contours);
for (let k = 0; k < g.contours.length; k++) {
const contour = g.contours[k];
for (let p = 0; p < contour.length; p++) {
contour[p].x -= contour[p].y * skew;
} }
mx = contour[p].x;
contour[p].x = Math.round(contour[p].x * 4) / 4;
offJ = p + 1;
} }
} }
const c1 = [];
for (let k = 0; k < g.contours.length; k++) {
c1.push(Glyph.contourToStandardCubic(g.contours[k]));
}
// De-overlap
g.contours = caryllShapeOps.removeOverlap(c1, 1, 256, true);
// Finalize
g.contours = c2q.contours(g.contours);
for (let k = 0; k < g.contours.length; k++) {
const contour = g.contours[k];
for (let p = 0; p < contour.length; p++) {
contour[p].x -= contour[p].y * skew;
}
}
}
if (argv.o) {
const skew = const skew =
(argv.uprightify ? 1 : 0) * Math.tan(((font.post.italicAngle || 0) / 180) * Math.PI); (argv.uprightify ? 1 : 0) * Math.tan(((font.post.italicAngle || 0) / 180) * Math.PI);
const excludeUnicodes = new Set();
excludeUnicodes.add(0x80);
for (let c = 0x2500; c <= 0x259f; c++) excludeUnicodes.add(c);
// autoref // autoref
autoref(font.glyf); autoref(font.glyf, excludeUnicodes);
// regulate // regulate
for (let g of font.glyf) regulateGlyph(g, skew); for (let g of font.glyf) regulateGlyph(g, skew);

View file

@ -24,6 +24,10 @@
"ttf2woff2": "^2.0.3", "ttf2woff2": "^2.0.3",
"unorm": "^1.4.1", "unorm": "^1.4.1",
"verda": "^0.1.4", "verda": "^0.1.4",
"yargs": "^12.0.0" "yargs": "^12.0.0",
"primitive-quadify-off-curves": "^0.4.0"
},
"devDependencies": {
"eslint": "^5.2.0"
} }
} }

View file

@ -1,4 +1,6 @@
var Point = require("./point"); "use strict";
const Point = require("./point");
function delta(a, b) { function delta(a, b) {
return Math.round((a - b) * 32); return Math.round((a - b) * 32);
@ -6,11 +8,11 @@ function delta(a, b) {
function contourHash(c) { function contourHash(c) {
if (!c || c.length < 2) return "."; if (!c || c.length < 2) return ".";
var lx = c[0].x, let lx = c[0].x,
ly = c[0].y; ly = c[0].y;
var buf = ""; let buf = "";
for (var j = 1; j < c.length; j++) { for (let j = 1; j < c.length; j++) {
var z = c[j]; const z = c[j];
buf += `${z.on ? "o" : "f"}${z.cubic ? "c" : "q"}${delta(z.x, lx)},${delta(z.y, ly)};`; buf += `${z.on ? "o" : "f"}${z.cubic ? "c" : "q"}${delta(z.x, lx)},${delta(z.y, ly)};`;
(lx = z.x), (ly = z.y); (lx = z.x), (ly = z.y);
} }
@ -19,8 +21,8 @@ function contourHash(c) {
function match(g1, g2, _n) { function match(g1, g2, _n) {
for (let j = 0; j + g1.contours.length <= g2.contours.length; j++) { for (let j = 0; j + g1.contours.length <= g2.contours.length; j++) {
var found = true; let found = true;
for (var k = j; k < g2.contours.length && k - j < g1.contours.length; k++) { for (let k = j; k < g2.contours.length && k - j < g1.contours.length; k++) {
if ( if (
g1.contours[k - j].hash !== g2.contours[k].hash || g1.contours[k - j].hash !== g2.contours[k].hash ||
!( !(
@ -46,7 +48,8 @@ function match(g1, g2, _n) {
glyph: g1.name, glyph: g1.name,
_n: _n, _n: _n,
x: refX, x: refX,
y: refY y: refY,
roundToGrid: false
}); });
g2.contours.splice(j, g1.contours.length); g2.contours.splice(j, g1.contours.length);
return true; return true;
@ -56,31 +59,31 @@ function match(g1, g2, _n) {
} }
function unlinkRef(g, dx, dy, glyf) { function unlinkRef(g, dx, dy, glyf) {
var cntrs = g.contours.map(c => c.map(z => new Point(z.x + dx, z.y + dy, z.on, z.cubic))); let contours = g.contours.map(c => c.map(z => new Point(z.x + dx, z.y + dy, z.on, z.cubic)));
if (g.references) if (g.references)
for (let r of g.references) { for (let r of g.references) {
cntrs = cntrs.concat(unlinkRef(glyf[r._n], r.x + dx, r.y + dy, glyf)); contours = contours.concat(unlinkRef(glyf[r._n], r.x + dx, r.y + dy, glyf));
} }
return cntrs; return contours;
} }
function autoref(glyf) { function autoref(glyf, excludeUnicodes) {
supporessNaN(glyf); suppressNaN(glyf);
for (var j = 0; j < glyf.length; j++) { for (let j = 0; j < glyf.length; j++) {
var g = glyf[j]; const g = glyf[j];
if (g.contours) { if (g.contours) {
for (var k = 0; k < g.contours.length; k++) { for (let k = 0; k < g.contours.length; k++) {
var contour = g.contours[k]; const contour = g.contours[k];
contour.hash = contourHash(contour); contour.hash = contourHash(contour);
} }
} }
} }
// Refl-referencify, forward. // Refl-referencify, forward.
for (var j = 0; j < glyf.length; j++) { for (let j = 0; j < glyf.length; j++) {
if (!glyf[j].contours.length || (glyf[j].references && glyf[j].references.length)) continue; if (!glyf[j].contours.length || (glyf[j].references && glyf[j].references.length)) continue;
for (var k = j + 1; k < glyf.length; k++) { for (let k = j + 1; k < glyf.length; k++) {
if (glyf[j].contours.length === glyf[k].contours.length) { if (glyf[j].contours.length === glyf[k].contours.length) {
match(glyf[j], glyf[k], j); match(glyf[j], glyf[k], j);
} }
@ -88,44 +91,42 @@ function autoref(glyf) {
} }
// referencify, backward // referencify, backward
for (var j = 0; j < glyf.length; j++) { for (let j = 0; j < glyf.length; j++) {
if (glyf[j].cmpPriority < 0) continue; if (glyf[j].cmpPriority < 0) continue;
if (!glyf[j].contours.length) continue; if (!glyf[j].contours.length) continue;
if (glyf[j].references && glyf[j].references.length) continue; if (glyf[j].references && glyf[j].references.length) continue;
for (var k = glyf.length - 1; k >= 0; k--) { for (let k = glyf.length - 1; k >= 0; k--) {
if (glyf[j].contours.length > glyf[k].contours.length) continue;
if ( if (
glyf[j].contours.length > glyf[k].contours.length || glyf[j].contours.length === glyf[k].contours.length &&
(glyf[j].contours.length === glyf[k].contours.length && !(glyf[k].references && glyf[k].references.length)
!(glyf[k].references && glyf[k].references.length)) ) {
)
continue; continue;
}
while (match(glyf[j], glyf[k], j)) "pass"; while (match(glyf[j], glyf[k], j)) "pass";
} }
} }
// unlink composite // unlink composite
for (var j = 0; j < glyf.length; j++) { for (let j = 0; j < glyf.length; j++) {
if (!glyf[j].flatten) { if (!glyf[j].references || glyf[j].references.length === 0) continue;
if (!glyf[j].references || glyf[j].references.length === 0) continue; if (
if ( glyf[j].contours.length === 0 &&
glyf[j].contours.length === 0 && !(glyf[j].unicode && excludeUnicodes.has(glyf[j].unicode[0]))
!(glyf[j].unicode && glyf[j].unicode[0] < 0x80) && ) {
!(glyf[j].unicode && glyf[j].unicode[0] >= 0x2500 && glyf[j].unicode[0] <= 0x259f) continue;
)
continue;
} }
var cs = unlinkRef(glyf[j], 0, 0, glyf); glyf[j].contours = unlinkRef(glyf[j], 0, 0, glyf);
glyf[j].contours = g.contours.concat(cs);
glyf[j].references = []; glyf[j].references = [];
} }
} }
function supporessNaN(glyf) { function suppressNaN(glyf) {
for (var j = 0; j < glyf.length; j++) { for (let j = 0; j < glyf.length; j++) {
var g = glyf[j]; let g = glyf[j];
if (!g.contours) continue; if (!g.contours) continue;
for (var k = 0; k < g.contours.length; k++) { for (let k = 0; k < g.contours.length; k++) {
var contour = g.contours[k]; let contour = g.contours[k];
for (let z of contour) { for (let z of contour) {
if (!isFinite(z.x)) z.x = 0; if (!isFinite(z.x)) z.x = 0;
if (!isFinite(z.y)) z.y = 0; if (!isFinite(z.y)) z.y = 0;

View file

@ -1,24 +1,15 @@
var Transform = require('./transform.js'); "use strict";
var ANGLES = 12; const Transform = require("./transform.js");
var VERYCROWD = 2; const quadify = require("primitive-quadify-off-curves");
var SMALLANGLE = 0.05;
var SMALLANGLE_CLEANMORE = 0.075; const ANGLES = 12;
var CROWD = 4; const SMALL = 1e-4;
var LOOSE = 6;
var SMALL = 1e-4;
var CLOSE = 1;
function cross(z1, z2, z3) {
return (z2.x - z1.x) * (z3.y - z1.y) - (z3.x - z1.x) * (z2.y - z1.y);
}
function dot(z1, z2, z3) {
return (z2.x - z1.x) * (z3.x - z1.x) + (z3.y - z1.y) * (z2.y - z1.y);
}
function solveTS(a, b, c, out, flag) { function solveTS(a, b, c, out, flag) {
var delta = b * b - 4 * a * c; const delta = b * b - 4 * a * c;
if (delta > 0) { if (delta > 0) {
var t1 = (Math.sqrt(delta) - b) / (2 * a); const t1 = (Math.sqrt(delta) - b) / (2 * a);
var t2 = (-Math.sqrt(delta) - b) / (2 * a); const t2 = (-Math.sqrt(delta) - b) / (2 * a);
if (flag) { if (flag) {
if (t1 >= 0 && t1 <= 1) out.push(t1); if (t1 >= 0 && t1 <= 1) out.push(t1);
if (t2 >= 0 && t2 <= 1) out.push(t2); if (t2 >= 0 && t2 <= 1) out.push(t2);
@ -27,7 +18,7 @@ function solveTS(a, b, c, out, flag) {
if (t2 > 0 && t2 < 1) out.push(t2); if (t2 > 0 && t2 < 1) out.push(t2);
} }
} else if (delta === 0) { } else if (delta === 0) {
var t = -b / (2 * a); const t = -b / (2 * a);
if (flag) { if (flag) {
if (t >= 0 && t <= 1) out.push(t); if (t >= 0 && t <= 1) out.push(t);
} else { } else {
@ -36,22 +27,22 @@ function solveTS(a, b, c, out, flag) {
} }
} }
function findExtrema(z1, z2, z3, z4, out) { function findExtrema(z1, z2, z3, z4, out) {
var a = 3 * (-z1.y + 3 * z2.y - 3 * z3.y + z4.y); const a = 3 * (-z1.y + 3 * z2.y - 3 * z3.y + z4.y);
var b = 6 * (z1.y - 2 * z2.y + z3.y); const b = 6 * (z1.y - 2 * z2.y + z3.y);
var c = 3 * (z2.y - z1.y); const c = 3 * (z2.y - z1.y);
solveTS(a, b, c, out); solveTS(a, b, c, out);
} }
function findInflections(z1, z2, z3, z4, out) { // function findInflections(z1, z2, z3, z4, out) {
var ax = z2.x - z1.x; // const ax = z2.x - z1.x;
var ay = z2.y - z1.y; // const ay = z2.y - z1.y;
var bx = z3.x - z2.x - ax; // const bx = z3.x - z2.x - ax;
var by = z3.y - z2.y - ay; // const by = z3.y - z2.y - ay;
var cx = z4.x - z3.x - ax - 2 * bx; // const cx = z4.x - z3.x - ax - 2 * bx;
var cy = z4.y - z3.y - ay - 2 * by; // const cy = z4.y - z3.y - ay - 2 * by;
solveTS(bx * cy - by * cx, ax * cy - ay * cx, ax * by - ay * bx, out, true); // solveTS(bx * cy - by * cx, ax * cy - ay * cx, ax * by - ay * bx, out, true);
} // }
function rotate(z, angle) { function rotate(z, angle) {
var c = Math.cos(angle), const c = Math.cos(angle),
s = Math.sin(angle); s = Math.sin(angle);
return { return {
x: c * z.x + s * z.y, x: c * z.x + s * z.y,
@ -62,9 +53,9 @@ function ASCEND(a, b) {
return a - b; return a - b;
} }
function fineAllExtrema(z1, z2, z3, z4, angles) { function fineAllExtrema(z1, z2, z3, z4, angles) {
var exs = []; let exs = [];
findInflections(z1, z2, z3, z4, exs); // findInflections(z1, z2, z3, z4, exs);
for (var a = 0; a < angles; a += 1) { for (let a = 0; a < angles; a += 1) {
findExtrema(z1, z2, z3, z4, exs); findExtrema(z1, z2, z3, z4, exs);
z1 = rotate(z1, Math.PI / angles); z1 = rotate(z1, Math.PI / angles);
z2 = rotate(z2, Math.PI / angles); z2 = rotate(z2, Math.PI / angles);
@ -76,13 +67,16 @@ function fineAllExtrema(z1, z2, z3, z4, angles) {
function mix(z1, z2, t) { function mix(z1, z2, t) {
if (t <= 0) return z1; if (t <= 0) return z1;
if (t >= 1) return z2; if (t >= 1) return z2;
var x = (1 - t) * z1.x + t * z2.x, y = (1 - t) * z1.y + t * z2.y let x = (1 - t) * z1.x + t * z2.x,
y = (1 - t) * z1.y + t * z2.y;
return { x: x, y: y }; return { x: x, y: y };
} }
function bez2(z1, z2, z3, t) { function bez2(z1, z2, z3, t) {
if (t <= 0) return z1; if (t <= 0) return z1;
if (t >= 1) return z3; if (t >= 1) return z3;
var c1 = (1 - t) * (1 - t), c2 = 2 * (1 - t) * t, c3 = t * t; let c1 = (1 - t) * (1 - t),
c2 = 2 * (1 - t) * t,
c3 = t * t;
return { return {
x: c1 * z1.x + c2 * z2.x + c3 * z3.x, x: c1 * z1.x + c2 * z2.x + c3 * z3.x,
y: c1 * z1.y + c2 * z2.y + c3 * z3.y y: c1 * z1.y + c2 * z2.y + c3 * z3.y
@ -91,8 +85,10 @@ function bez2(z1, z2, z3, t) {
function bez3(z1, z2, z3, z4, t) { function bez3(z1, z2, z3, z4, t) {
if (t <= 0) return z1; if (t <= 0) return z1;
if (t >= 1) return z4; if (t >= 1) return z4;
var c1 = (1 - t) * (1 - t) * (1 - t), c2 = 3 * t * (1 - t) * (1 - t), let c1 = (1 - t) * (1 - t) * (1 - t),
c3 = 3 * t * t * (1 - t), c4 = t * t * t; c2 = 3 * t * (1 - t) * (1 - t),
c3 = 3 * t * t * (1 - t),
c4 = t * t * t;
return { return {
x: c1 * z1.x + c2 * z2.x + c3 * z3.x + c4 * z4.x, x: c1 * z1.x + c2 * z2.x + c3 * z3.x + c4 * z4.x,
y: c1 * z1.y + c2 * z2.y + c3 * z3.y + c4 * z4.y y: c1 * z1.y + c2 * z2.y + c3 * z3.y + c4 * z4.y
@ -104,8 +100,8 @@ function splitBefore(z1, z2, z3, z4, t) {
function splitAfter(z1, z2, z3, z4, t) { function splitAfter(z1, z2, z3, z4, t) {
return [bez3(z1, z2, z3, z4, t), bez2(z2, z3, z4, t), mix(z3, z4, t), z4]; return [bez3(z1, z2, z3, z4, t), bez2(z2, z3, z4, t), mix(z3, z4, t), z4];
} }
function splitAtExtrema(z1, z2, z3, z4, angles, splitpoints) { function splitAtExtrema(z1, z2, z3, z4, angles, curve) {
var ts = fineAllExtrema(z1, z2, z3, z4, angles); const ts = fineAllExtrema(z1, z2, z3, z4, angles);
if (ts[0] < SMALL) { if (ts[0] < SMALL) {
ts[0] = 0; ts[0] = 0;
} else { } else {
@ -116,236 +112,262 @@ function splitAtExtrema(z1, z2, z3, z4, angles, splitpoints) {
} else { } else {
ts.push(1); ts.push(1);
} }
for (var k = 0; k < ts.length; k++) { for (let k = 0; k < ts.length; k++) {
if (k > 0) { if (k > 0) {
var t1 = ts[k - 1]; const t1 = ts[k - 1];
var t2 = ts[k]; const t2 = ts[k];
var bef = splitBefore(z1, z2, z3, z4, t2); const bef = splitBefore(z1, z2, z3, z4, t2);
var seg = splitAfter(bef[0], bef[1], bef[2], bef[3], t1 / t2); const seg = splitAfter(bef[0], bef[1], bef[2], bef[3], t1 / t2);
seg[1].on = seg[2].on = false; seg[1].on = seg[2].on = false;
seg[1].cubic = seg[2].cubic = true; seg[1].cubic = seg[2].cubic = true;
seg[3].on = true; seg[3].on = true;
splitpoints.push(seg[1], seg[2], seg[3]); curve.push(seg[1], seg[2], seg[3]);
} }
} }
} }
function splitSegment(z1, z2, z3, z4, angles, splitpoints) { // function splitSegment(z1, z2, z3, z4, angles, curve) {
var ts = []; // let ts = [];
var inflectAtEnd = false; // let inflectAtEnd = false;
findInflections(z1, z2, z3, z4, ts); // // findInflections(z1, z2, z3, z4, ts);
ts = ts.sort(ASCEND); // // ts = ts.sort(ASCEND);
if (ts[0] < SMALL) { // if (ts[0] < SMALL) {
ts[0] = 0; // ts[0] = 0;
splitpoints[splitpoints.length - 1].inflect = true; // curve[curve.length - 1].inflect = true;
} else { // } else {
ts.unshift(0); // ts.unshift(0);
} // }
if (ts[ts.length - 1] > 1 - SMALL) { // if (ts[ts.length - 1] > 1 - SMALL) {
inflectAtEnd = true; // inflectAtEnd = true;
ts[ts.length - 1] = 1; // ts[ts.length - 1] = 1;
} else { // } else {
ts.push(1); // ts.push(1);
} // }
for (var k = 0; k < ts.length; k++) { // for (let k = 0; k < ts.length; k++) {
if (k > 0) { // if (k > 0) {
var t1 = ts[k - 1]; // const t1 = ts[k - 1];
var t2 = ts[k]; // const t2 = ts[k];
var bef = splitBefore(z1, z2, z3, z4, t2); // const bef = splitBefore(z1, z2, z3, z4, t2);
var seg = splitAfter(bef[0], bef[1], bef[2], bef[3], t1 / t2); // const seg = splitAfter(bef[0], bef[1], bef[2], bef[3], t1 / t2);
splitAtExtrema(seg[0], seg[1], seg[2], seg[3], angles, splitpoints); // splitAtExtrema(seg[0], seg[1], seg[2], seg[3], angles, curve);
if (t2 < 1 || inflectAtEnd) // if (t2 < 1 || inflectAtEnd) curve[curve.length - 1].inflect = true;
splitpoints[splitpoints.length - 1].inflect = true; // }
} // }
} // }
} function veryClose(z1, z2) {
function fitpts(p1, c1, c2, p2) {
var d1 = {
x: c1.x - p1.x,
y: c1.y - p1.y
};
var d2 = {
x: c2.x - p2.x,
y: c2.y - p2.y
};
var det = d2.x * d1.y - d2.y * d1.x;
if (Math.abs(det) < 1e-6) return null;
var u = ((p2.y - p1.y) * d2.x - (p2.x - p1.x) * d2.y) / det;
var v = ((p2.y - p1.y) * d1.x - (p2.x - p1.x) * d1.y) / det;
if (u <= 0 || v <= 0) return null;
var mid = {
x: p1.x + d1.x * u,
y: p1.y + d1.y * u
};
return [mix(mid, p1, 1 / 3), mix(mid, p2, 1 / 3)];
}
function distance(z1, z2) {
return Math.sqrt((z1.x - z2.x) * (z1.x - z2.x) + (z1.y - z2.y) * (z1.y - z2.y));
}
function veryclose(z1, z2) {
return (z1.x - z2.x) * (z1.x - z2.x) + (z1.y - z2.y) * (z1.y - z2.y) <= SMALL; return (z1.x - z2.x) * (z1.x - z2.x) + (z1.y - z2.y) * (z1.y - z2.y) <= SMALL;
} }
function angleBetween(z1, z2, z3, z4) {
return (Math.atan2(z2.y - z1.y, z2.x - z1.x) - Math.atan2(z4.y - z3.y, z4.x - z3.x)) % Math.PI; function splitCurve(sourceCurve) {
} const curve = [sourceCurve[0]];
function pldistance(z1, z2, z) { let last = sourceCurve[0];
return Math.abs((z2.y - z1.y) * z.x - (z2.x - z1.x) * z.y + z2.x * z1.y - z2.y * z1.x) / Math.sqrt((z2.x - z1.x) * (z2.x - z1.x) + (z2.y - z1.y) * (z2.y - z1.y)); for (let j = 1; j < sourceCurve.length; j++) {
} if (sourceCurve[j].on) {
function estimateSegments(z1, z2) { const z1 = last,
var hspan = Math.abs(z1.x - z2.x); z4 = sourceCurve[j];
var vspan = Math.abs(z1.y - z2.y); // const z2 = mix(z1, z4, 1 / 3);
return hspan <= 5 * CROWD || vspan <= 5 * CROWD ? VERYCROWD : hspan <= 10 * LOOSE || vspan <= 10 * LOOSE ? CROWD : LOOSE; //const z3 = mix(z1, z4, 2 / 3);
} if (!veryClose(z1, z4)) {
function enoughRotate(bef, z0, z1, z2, aft, cleanMore, flagl, flagr) { curve.push(z4);
var angleRotatedBefore = Math.abs(angleBetween(bef.next || z1, bef, z1, z0)); // splitAtExtrema(z1, z2, z3, z4, ANGLES, curve);
var angleRotatedAfter = Math.abs(angleBetween(aft.prev || z1, aft, z1, z2)); last = z4;
var smallanglel = (cleanMore ? SMALLANGLE_CLEANMORE : SMALLANGLE) * (flagl && cleanMore ? 1 : 2); }
var smallangler = (cleanMore ? SMALLANGLE_CLEANMORE : SMALLANGLE) * (flagr && cleanMore ? 1 : 2); } else if (sourceCurve[j].cubic) {
return !((angleRotatedBefore < smallanglel || angleRotatedBefore > Math.PI - smallanglel) && pldistance(z1, z0, bef) <= CLOSE && distance(z1, bef) <= 5 * CROWD const z1 = last,
|| (flagr ? false : (angleRotatedAfter < smallangler || angleRotatedAfter > Math.PI - smallangler) && pldistance(z1, z2, aft) <= CLOSE && distance(z1, aft) <= 5 * CROWD)); z2 = sourceCurve[j],
} z3 = sourceCurve[j + 1],
function fairify(scurve, gizmo, denseQ, cleanMore) { z4 = sourceCurve[j + 2];
for (var j = 0; j < scurve.length; j++) { if (!(veryClose(z1, z2) && veryClose(z2, z3) && veryClose(z3, z4))) {
if (!isFinite(scurve[j].x)) scurve[j].x = 0; splitAtExtrema(z1, z2, z3, z4, ANGLES, curve);
if (!isFinite(scurve[j].y)) scurve[j].y = 0;
scurve[j] = Transform.untransform(gizmo, scurve[j]);
}
var splitpoints = [scurve[0]];
var last = scurve[0];
for (var j = 1; j < scurve.length; j++) {
if (scurve[j].on) {
splitpoints.push(last = scurve[j]);
} else if (scurve[j].cubic) {
var z1 = last,
z2 = scurve[j],
z3 = scurve[j + 1],
z4 = scurve[j + 2];
if (!(veryclose(z1, z2) && veryclose(z2, z3) && veryclose(z3, z4))) {
splitSegment(z1, z2, z3, z4, ANGLES, splitpoints);
last = z4; last = z4;
} }
j += 2; j += 2;
} else { } else {
var z1 = last, const z1 = last,
zm = scurve[j], zm = sourceCurve[j],
z4 = scurve[j + 1]; z4 = sourceCurve[j + 1];
if (!(veryclose(z1, zm) && veryclose(zm, z4))) { if (!(veryClose(z1, zm) && veryClose(zm, z4))) {
var z2 = mix(zm, z1, 1 / 3); const z2 = mix(zm, z1, 1 / 3);
var z3 = mix(zm, z4, 1 / 3); const z3 = mix(zm, z4, 1 / 3);
splitSegment(z1, z2, z3, z4, ANGLES, splitpoints); splitAtExtrema(z1, z2, z3, z4, ANGLES, curve);
last = z4; last = z4;
} }
j += 1; j += 1;
} }
} }
// Mark corners and extrema return curve;
for (var j = 1; j < splitpoints.length - 1; j++) { }
if (splitpoints[j].on && !splitpoints[j - 1].on) {
splitpoints[j].prev = splitpoints[j - 1]; function cross(z1, z2, z3) {
} return (z2.x - z1.x) * (z3.y - z1.y) - (z3.x - z1.x) * (z2.y - z1.y);
if (splitpoints[j].on && !splitpoints[j + 1].on) { }
splitpoints[j].next = splitpoints[j + 1]; function dot(z1, z2, z3) {
} return (z2.x - z1.x) * (z3.x - z1.x) + (z3.y - z1.y) * (z2.y - z1.y);
if (splitpoints[j].on && !splitpoints[j - 1].on && !splitpoints[j + 1].on) { }
var z1 = splitpoints[j],
z0 = splitpoints[j - 1], function markCorners(curve) {
z2 = splitpoints[j + 1]; for (let j = 0; j < curve.length; j++) {
if (cross(z1, z0, z2) < 1e-6 && dot(z1, z0, z2) < 0) { if (!curve[j].on) continue;
var angle0 = Math.atan2(z2.y - z0.y, z2.x - z0.x); const z1 = curve[j],
var angle = Math.abs(angle0 / Math.PI * 2 % 1); z0 = curve[(j - 1 + curve.length) % curve.length],
if (Math.abs(Math.abs(angle0) - Math.PI / 2) <= SMALL || angle <= SMALL || angle >= 1 - SMALL) { z2 = curve[(j + 1) % curve.length];
z1.mark = true; // extremum if (Math.abs(cross(z1, z0, z2)) < 1e-6) {
z1.inflect = false; // Z0 -- Z1 -- Z2 are linear
} else { if (!z0.on && !z2.on && dot(z1, z0, z2) < 0) {
var isInflection = false; const angle0 = Math.atan2(z2.y - z0.y, z2.x - z0.x);
if (j > 2 && j < splitpoints.length - 2) { const angle = Math.abs(((angle0 / Math.PI) * 2) % 1);
var za = bez3(z1, z0, splitpoints[j - 2], splitpoints[j - 3], SMALL); if (
var zb = bez3(z1, z2, splitpoints[j + 2], splitpoints[j + 3], SMALL); Math.abs(Math.abs(angle0) - Math.PI / 2) <= SMALL ||
var inflect = ((z0.y - z2.y) * (za.x - z0.x) + (z2.x - z0.x) * (za.y - z0.y)) angle <= SMALL ||
* ((z0.y - z2.y) * (zb.x - z0.x) + (z2.x - z0.x) * (zb.y - z0.y)); angle >= 1 - SMALL
if (inflect < 0) ) {
isInflection = true; z1.mark = true; // curve extremum
}
if (z1.inflect || isInflection) {
z1.mark = true;
z1.asinflect = true;
}
} }
} else if (z0.on && z2.on && dot(z1, z0, z2) < 0) {
// Colinear on-knots
// Remove
} else { } else {
z1.mark = true; // also corner z1.mark = true; // also corner
} }
} else if (splitpoints[j].on) { } else {
splitpoints[j].mark = true; // corner z1.mark = true; // corner
} }
} }
splitpoints[0].mark = splitpoints[splitpoints.length - 1].mark = true; }
// Mark cleanup inflections
for (var pass = 0; pass < 2; pass++) { class BezierCurveCluster {
for (var j = 1; j < splitpoints.length - 1; j++) { constructor(zs) {
if (splitpoints[j].mark) { let segments = [];
for (var k = j - 1; k >= 0 && !splitpoints[k].mark; k--); let lengths = [];
lastmark = splitpoints[k]; let last = zs[0];
for (var k = j + 1; k < splitpoints.length && !splitpoints[k].mark; k++); for (let j = 1; j < zs.length; j++) {
nextmark = splitpoints[k]; if (zs[j].on) {
const z1 = last,
z4 = zs[j];
const z2 = mix(z1, z4, 1 / 3);
const z3 = mix(z1, z4, 2 / 3);
segments.push(new quadify.CubicBezierCurve(z1, z2, z3, z4));
lengths.push(Math.hypot(z4.x - z1.x, z4.y - z1.y));
last = z4;
} else if (zs[j].cubic) {
const z1 = last,
z2 = zs[j],
z3 = zs[j + 1],
z4 = zs[j + 2];
segments.push(new quadify.CubicBezierCurve(z1, z2, z3, z4));
lengths.push(Math.hypot(z4.x - z1.x, z4.y - z1.y));
last = z4;
j += 2;
} else {
const z1 = last,
zm = zs[j],
z4 = zs[j + 1];
const z2 = mix(zm, z1, 1 / 3);
const z3 = mix(zm, z4, 1 / 3);
segments.push(new quadify.CubicBezierCurve(z1, z2, z3, z4));
lengths.push(Math.hypot(z4.x - z1.x, z4.y - z1.y));
last = z4;
j += 1;
} }
if (splitpoints[j].mark && splitpoints[j].asinflect) { }
var z1 = splitpoints[j],
z0 = splitpoints[j - 1], let totalLength = 0;
z2 = splitpoints[j + 1]; for (let j = 0; j < lengths.length; j++) totalLength += lengths[j];
if (!(denseQ || enoughRotate(lastmark, z0, z1, z2, nextmark, cleanMore, lastmark.asinflect, nextmark.asinflect))) { let lengthSofar = 0;
//z1.mark = false; for (let j = 0; j < lengths.length; j++) {
z0.remove = z1.remove = z2.remove = true; let segLen = lengths[j];
lengths[j] = lengthSofar / totalLength;
lengthSofar += segLen;
}
this.segments = segments;
this.lengths = lengths;
// console.log(this.eval(0), this.eval(1 / 2), this.eval(1));
// console.log(this.derivative(0), this.derivative(1 / 2), this.derivative(1));
}
getIndex(t) {
let j = this.lengths.length - 1;
while (j > 0 && this.lengths[j] > t) j--;
return j;
}
eval(t) {
const j = this.getIndex(t);
const tBefore = this.lengths[j];
const tNext = j < this.lengths.length - 1 ? this.lengths[j + 1] : 1;
const tRelative = (t - tBefore) / (tNext - tBefore);
return this.segments[j].eval(tRelative);
}
derivative(t) {
const j = this.getIndex(t);
const tBefore = this.lengths[j];
const tNext = j < this.lengths.length - 1 ? this.lengths[j + 1] : 1;
const tRelative = (t - tBefore) / (tNext - tBefore);
// console.log(
// t,
// tRelative,
// tNext,
// tBefore,
// tNext - tBefore,
// this.segments[j].derivative(tRelative)
// );
const d = this.segments[j].derivative(tRelative);
d.x /= tNext - tBefore;
d.y /= tNext - tBefore;
return d;
}
}
function buildCurve(curve) {
let exitPoints = [];
for (let j = 0; j < curve.length; j++) {
if (!curve[j].mark) continue;
let k = j;
for (; k < curve.length && (k === j || !curve[k].mark); k++);
exitPoints.push(curve[j]);
const pts = curve.slice(j, k + 1);
let nPtsOffPoints = 0;
for (const z of pts) {
if (!z.on) nPtsOffPoints += 1;
}
if (nPtsOffPoints > 0) {
const curve = new BezierCurveCluster(pts);
const offPoints = quadify.autoQuadify(curve, 1 / 4);
if (!offPoints) continue;
for (let k = 0; k < offPoints.length; k++) {
const z = offPoints[k];
if (k > 0) {
const z0 = offPoints[k - 1];
exitPoints.push({
x: (z.x + z0.x) / 2,
y: (z.y + z0.y) / 2,
on: true
});
} }
exitPoints.push({
x: z.x,
y: z.y,
cubic: false,
on: false
});
} }
} }
for (var j = 0; j < splitpoints.length; j++) if (splitpoints[j].remove) { j = k - 1;
splitpoints[j].mark = false;
}
} }
// Mark diagonals return exitPoints;
var lastmark = splitpoints[0]; }
for (var k = 1; k < splitpoints.length && !splitpoints[k].mark; k++);
var nextmark = splitpoints[k]; module.exports = function(sourceCurve, gizmo) {
var segments = estimateSegments(lastmark, nextmark); for (let j = 0; j < sourceCurve.length; j++) {
for (var j = 1; j < splitpoints.length - 1; j++) { if (!isFinite(sourceCurve[j].x)) sourceCurve[j].x = 0;
if (splitpoints[j].mark) { if (!isFinite(sourceCurve[j].y)) sourceCurve[j].y = 0;
lastmark = splitpoints[j]; sourceCurve[j] = Transform.untransform(gizmo, sourceCurve[j]);
for (var k = j + 1; k < splitpoints.length && !splitpoints[k].mark; k++);
nextmark = splitpoints[k];
segments = estimateSegments(lastmark, nextmark);
}
if (splitpoints[j].on && !splitpoints[j].mark) {
var z1 = splitpoints[j],
z0 = splitpoints[j - 1],
z2 = splitpoints[j + 1];
var angle0 = Math.atan2(z2.y - z0.y, z2.x - z0.x);
var angle = Math.abs(angle0 / Math.PI * segments % 1);
var angleRotatedBefore = Math.abs(angleBetween(z1, lastmark, z1, z0));
var angleRotatedAfter = Math.abs(angleBetween(z1, nextmark, z1, z2));
if (!(Math.abs(Math.abs(angle0) - Math.PI / 2) <= SMALL || angle <= SMALL || angle >= 1 - SMALL)
|| !(denseQ || enoughRotate(lastmark, z0, z1, z2, nextmark))) {
z1.remove = z0.remove = z2.remove = true;
}
}
} }
// Rebuild curve const curve = splitCurve(sourceCurve);
for (var j = 0; j < splitpoints.length; j++) if (splitpoints[j].on && !splitpoints[j].remove && splitpoints[j + 1] && !splitpoints[j + 1].on) { markCorners(curve);
for (var k = j + 2; k < splitpoints.length && splitpoints[k].remove; k++); const builtCurve = buildCurve(curve);
if (k - j > 2) { const ans = [];
var zs = fitpts(splitpoints[j], splitpoints[j + 1], splitpoints[k], splitpoints[k + 1]); for (let j = 0; j < builtCurve.length; j++) {
if (zs) { if (builtCurve[j] && !builtCurve[j].remove) {
zs[0].on = zs[1].on = false; ans.push(Transform.transformPoint(gizmo, builtCurve[j]));
zs[0].cubic = zs[1].cubic = true;
splitpoints[j + 1] = zs[0];
splitpoints[k] = zs[1];
}
} }
j = k;
}
var ans = [];
for (var j = 0; j < splitpoints.length; j++)if (splitpoints[j] && !splitpoints[j].remove) {
ans.push(Transform.transformPoint(gizmo, splitpoints[j]));
} }
return ans; return ans;
} };
module.exports = fairify;

View file

@ -251,102 +251,3 @@ export all : class Glyph
set {.x lx .y ly} zf set {.x lx .y ly} zf
inc j inc j
return c return c
public [cleanup t] : begin
foreach c [range 0 this.contours.length] : begin
local ocontour this.contours.(c)
# add infections
local contour {[new Point ocontour.0.x ocontour.0.y ocontour.0.on]}
local flag 0
foreach [j : range 1 (ocontour.length - 1)] : piecewise
flag : dec flag
ocontour.(j).on : contour.push ocontour.(j)
ocontour.(j).cubic : begin
local p0 contour.(contour.length - 1)
local p1 ocontour.(j)
local p2 ocontour.(j + 1)
local p3 ocontour.(j + 2)
local strand : new Bezier p0.x p0.y p1.x p1.y p2.x p2.y p3.x p3.y
local ts [strand.extrema].y
piecewise
(!ts || ts.length < 1) : contour.push p1 p2 p3
true : begin
set ts [ts.sort byx]
ts.unshift 0
ts.push 1
foreach [k : range 0 (ts.length - 1)] : begin
local s : strand.split ts.(k) ts.(k + 1)
if s.points : begin
contour.push : new Point s.points.1.x s.points.1.y false true
contour.push : new Point s.points.2.x s.points.2.y false true
contour.push : new Point s.points.3.x s.points.3.y true
set flag 2
true : begin
local p0 contour.(contour.length - 1)
local p1 ocontour.(j)
local p2 ocontour.(j + 1)
if [not p2.on] : set p2 : new Point [mix p1.x p2.x 0.5] [mix p1.y p2.y 0.5] true
local strand : new Bezier p0.x p0.y p1.x p1.y p2.x p2.y
local ts [strand.extrema].y
piecewise
(!ts || ts.length < 1) : contour.push p1 p2
true : begin
set ts [ts.sort byx]
ts.unshift 0
ts.push 1
foreach [k : range 0 (ts.length - 1)] : begin
local s : strand.split ts.(k) ts.(k + 1)
if s.points : contour.push
new Point s.points.1.x s.points.1.y false
new Point s.points.2.x s.points.2.y true
set flag 1
contour.push [new Point ocontour.(ocontour.length - 1).x ocontour.(ocontour.length - 1).y ocontour.(ocontour.length - 1).on]
# cleanup
local cleanedContour {}
foreach j [range 1 : contour.length - 1] : begin
local p0 contour.(j - 1)
local p1 contour.(j)
local p2 contour.(j + 1)
if [oncurveRemovable p0 p1 p2 t] : set p1.unimportant true
foreach point [items-of contour] : if [not point.unimportant] : cleanedContour.push point
set contour cleanedContour
set cleanedContour {}
foreach j [range 0 contour.length] : if ([not contour.(j).cubic] && [not contour.(j).unimportant]) : begin
local found false
for [local k : j + 1] ((k < contour.length) && (
[not contour.(k).cubic] && [closepoint contour.(j) contour.(k) t]
|| contour.(k).cubic && contour.(k + 1).cubic
&& [closepoint contour.(j) contour.(k) t]
&& [closepoint contour.(j) contour.(k) t]
&& [closepoint contour.(j) contour.(k + 2) t])) [inc k] : begin
set contour.(k).unimportant true
set found true
if (contour.(k).cubic && contour.(k + 1).cubic
&& [closepoint contour.(j) contour.(k) t]
&& [closepoint contour.(j) contour.(k) t]
&& [closepoint contour.(j) contour.(k + 2) t]) : begin
set contour.(k + 1).unimportant true
set contour.(k + 2).unimportant true
set k : k + 2
if found : begin
set contour.(j).on true
set j (k - 1)
foreach point [items-of contour] : if [not point.unimportant] : cleanedContour.push point
this.contours.(c) = cleanedContour
set this.contours : this.contours.filter : lambda [c] : begin
if [not c.length] : return false
local xmin c.(0).x
local xmax c.(0).x
local ymin c.(0).y
local ymax c.(0).y
foreach z [items-of c] : begin
if (z.x < xmin) : set xmin z.x
if (z.x > xmax) : set xmax z.x
if (z.y < ymin) : set ymin z.y
if (z.y > ymax) : set ymax z.y
return : ymax - ymin > 1 && xmax - xmin > 1
return this

View file

@ -1,5 +1,5 @@
function maskBit(x, y) { function maskBit(x, y) {
return (x & (1 << y)); return x & (1 << y);
} }
module.exports = maskBit; module.exports = maskBit;

View file

@ -1,72 +1,112 @@
module.exports = function(xs, ys) { module.exports = function(xs, ys) {
var i, length = xs.length; let i,
length = xs.length;
// Deal with length issues // Deal with length issues
if (length != ys.length) { throw 'Need an equal count of xs and ys.'; } if (length != ys.length) {
if (length === 0) { return function(x) { return 0; }; } throw "Need an equal count of xs and ys.";
}
if (length === 0) {
return function() {
return 0;
};
}
if (length === 1) { if (length === 1) {
// Impl: Precomputing the result prevents problems if ys is mutated later and allows garbage collection of ys // Impl: Precomputing the result prevents problems if ys is mutated later and allows garbage collection of ys
// Impl: Unary plus properly converts values to numbers // Impl: Unary plus properly converts values to numbers
var result = +ys[0]; let result = +ys[0];
return function(x) { return result; }; return function() {
return result;
};
} }
// Rearrange xs and ys so that xs is sorted // Rearrange xs and ys so that xs is sorted
var indexes = []; let indexes = [];
for (i = 0; i < length; i++) { indexes.push(i); } for (i = 0; i < length; i++) {
indexes.sort(function(a, b) { return xs[a] < xs[b] ? -1 : 1; }); indexes.push(i);
var oldXs = xs, oldYs = ys; }
indexes.sort(function(a, b) {
return xs[a] < xs[b] ? -1 : 1;
});
let oldXs = xs,
oldYs = ys;
// Impl: Creating new arrays also prevents problems if the input arrays are mutated later // Impl: Creating new arrays also prevents problems if the input arrays are mutated later
xs = []; ys = []; xs = [];
ys = [];
// Impl: Unary plus properly converts values to numbers // Impl: Unary plus properly converts values to numbers
for (i = 0; i < length; i++) { xs.push(+oldXs[indexes[i]]); ys.push(+oldYs[indexes[i]]); } for (i = 0; i < length; i++) {
xs.push(+oldXs[indexes[i]]);
ys.push(+oldYs[indexes[i]]);
}
// Get consecutive differences and slopes // Get consecutive differences and slopes
var dys = [], dxs = [], ms = []; let dys = [],
dxs = [],
ms = [];
for (i = 0; i < length - 1; i++) { for (i = 0; i < length - 1; i++) {
var dx = xs[i + 1] - xs[i], dy = ys[i + 1] - ys[i]; const dx = xs[i + 1] - xs[i],
dxs.push(dx); dys.push(dy); ms.push(dy / dx); dy = ys[i + 1] - ys[i];
dxs.push(dx);
dys.push(dy);
ms.push(dy / dx);
} }
// Get degree-1 coefficients // Get degree-1 coefficients
var c1s = [ms[0]]; let c1s = [ms[0]];
for (i = 0; i < dxs.length - 1; i++) { for (i = 0; i < dxs.length - 1; i++) {
var m = ms[i], mNext = ms[i + 1]; const m = ms[i],
mNext = ms[i + 1];
if (m * mNext <= 0) { if (m * mNext <= 0) {
c1s.push(0); c1s.push(0);
} else { } else {
var dx = dxs[i], dxNext = dxs[i + 1], common = dx + dxNext; const dx = dxs[i],
c1s.push(3 * common / ((common + dxNext) / m + (common + dx) / mNext)); dxNext = dxs[i + 1],
common = dx + dxNext;
c1s.push((3 * common) / ((common + dxNext) / m + (common + dx) / mNext));
} }
} }
c1s.push(ms[ms.length - 1]); c1s.push(ms[ms.length - 1]);
// Get degree-2 and degree-3 coefficients // Get degree-2 and degree-3 coefficients
var c2s = [], c3s = []; let c2s = [],
c3s = [];
for (i = 0; i < c1s.length - 1; i++) { for (i = 0; i < c1s.length - 1; i++) {
var c1 = c1s[i], m = ms[i], invDx = 1 / dxs[i], common = c1 + c1s[i + 1] - m - m; const c1 = c1s[i],
c2s.push((m - c1 - common) * invDx); c3s.push(common * invDx * invDx); m = ms[i],
invDx = 1 / dxs[i],
common = c1 + c1s[i + 1] - m - m;
c2s.push((m - c1 - common) * invDx);
c3s.push(common * invDx * invDx);
} }
// Return interpolant function // Return interpolant function
return function(x) { return function(x) {
// The rightmost point in the dataset should give an exact result // The rightmost point in the dataset should give an exact result
var i = xs.length - 1; let i = xs.length - 1;
if (x == xs[i]) { return ys[i]; } if (x == xs[i]) {
return ys[i];
}
// Search for the interval x is in, returning the corresponding y if x is one of the original xs // Search for the interval x is in, returning the corresponding y if x is one of the original xs
var low = 0, mid, high = c3s.length - 1; let low = 0,
mid,
high = c3s.length - 1;
while (low <= high) { while (low <= high) {
mid = Math.floor(0.5 * (low + high)); mid = Math.floor(0.5 * (low + high));
var xHere = xs[mid]; let xHere = xs[mid];
if (xHere < x) { low = mid + 1; } if (xHere < x) {
else if (xHere > x) { high = mid - 1; } low = mid + 1;
else { return ys[mid]; } } else if (xHere > x) {
high = mid - 1;
} else {
return ys[mid];
}
} }
i = Math.max(0, high); i = Math.max(0, high);
// Interpolate // Interpolate
var diff = x - xs[i], diffSq = diff * diff; let diff = x - xs[i],
diffSq = diff * diff;
return ys[i] + c1s[i] * diff + c2s[i] * diffSq + c3s[i] * diff * diffSq; return ys[i] + c1s[i] * diff + c2s[i] * diffSq + c3s[i] * diff * diffSq;
}; };
}; };

View file

@ -27,12 +27,12 @@ want(...argv._);
////// Oracles ////// ////// Oracles //////
/////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
oracle(`o:version`).def(async target => { oracle(`o:version`).def(async () => {
const package_json = JSON.parse(fs.readFileSync(path.join(__dirname, "package.json"))); const package_json = JSON.parse(fs.readFileSync(path.join(__dirname, "package.json")));
return package_json.version; return package_json.version;
}); });
oracle(`o:raw-plans`).def(async target => { oracle(`o:raw-plans`).def(async () => {
const t = toml.parse(fs.readFileSync(path.resolve(__dirname, "build-plans.toml"))); const t = toml.parse(fs.readFileSync(path.resolve(__dirname, "build-plans.toml")));
for (const prefix in t.buildPlans) { for (const prefix in t.buildPlans) {
const plan = t.buildPlans[prefix]; const plan = t.buildPlans[prefix];
@ -287,7 +287,7 @@ task("contents:***").def(async (target, gid) => {
}); });
// Archive // Archive
task(`${ARCHIVE_DIR}/*-*.zip`).def(async (target, gid, version) => { task(`${ARCHIVE_DIR}/*-*.zip`).def(async (target, gid) => {
// Note: this target does NOT depend on the font files. // Note: this target does NOT depend on the font files.
const [exportPlans] = await target.need(`o:export-plans`, `dir:${target.path.dir}`); const [exportPlans] = await target.need(`o:export-plans`, `dir:${target.path.dir}`);
await target.need(`contents:${exportPlans[gid]}`); await target.need(`contents:${exportPlans[gid]}`);
@ -308,7 +308,7 @@ task("collection-fonts:***").def(async (target, cid) => {
const [{ groups }] = await target.need("o:collect-plans"); const [{ groups }] = await target.need("o:collect-plans");
await target.need(groups[cid].map(file => `${DIST}/collections/${cid}/${file}.ttc`)); await target.need(groups[cid].map(file => `${DIST}/collections/${cid}/${file}.ttc`));
}); });
task(`${ARCHIVE_DIR}/ttc-*-*.zip`).def(async (target, cid, version) => { task(`${ARCHIVE_DIR}/ttc-*-*.zip`).def(async (target, cid) => {
// Note: this target does NOT depend on the font files. // Note: this target does NOT depend on the font files.
await target.need(`dir:${target.path.dir}`); await target.need(`dir:${target.path.dir}`);
await target.need(`collection-fonts:${cid}`); await target.need(`collection-fonts:${cid}`);
@ -375,7 +375,7 @@ task(`all:archives`).def(async target => {
); );
}); });
phony(`clean`).def(async target => { phony(`clean`).def(async () => {
await rm(`build`); await rm(`build`);
await rm(`dist`); await rm(`dist`);
await rm(`release-archives`); await rm(`release-archives`);