Optimize memory footprint in outline conversion
This commit is contained in:
parent
f287d352da
commit
e29df67587
10 changed files with 411 additions and 378 deletions
|
@ -67,7 +67,6 @@ function convertContourToArcs(contour) {
|
|||
return newContour;
|
||||
}
|
||||
|
||||
export const SPIRO_PRECISION = 1 / 2;
|
||||
export const OCCURRENT_PRECISION = 1 / 16;
|
||||
export const GEOMETRY_PRECISION = 1 / 4;
|
||||
export const BOOLE_RESOLUTION = 0x4000;
|
||||
|
|
|
@ -6,6 +6,7 @@ import * as TypoGeom from "typo-geom";
|
|||
|
||||
import * as CurveUtil from "./curve-util.mjs";
|
||||
import { Point } from "./point.mjs";
|
||||
import { QuadifySink } from "./quadify.mjs";
|
||||
import { SpiroExpander } from "./spiro-expand.mjs";
|
||||
import { Transform } from "./transform.mjs";
|
||||
|
||||
|
@ -39,19 +40,15 @@ export class GeometryBase {
|
|||
}
|
||||
}
|
||||
|
||||
export class ContourGeometry extends GeometryBase {
|
||||
constructor(points) {
|
||||
export class InvalidGeometry extends GeometryBase {}
|
||||
|
||||
export class ContourSetGeometry extends GeometryBase {
|
||||
constructor(contours) {
|
||||
super();
|
||||
this.m_points = [];
|
||||
for (const z of points) {
|
||||
this.m_points.push(Point.from(z.type, z));
|
||||
}
|
||||
this.m_contours = contours;
|
||||
}
|
||||
asContours() {
|
||||
if (this.isEmpty()) return [];
|
||||
let c1 = [];
|
||||
for (const z of this.m_points) c1.push(Point.from(z.type, z));
|
||||
return [c1];
|
||||
return this.m_contours;
|
||||
}
|
||||
asReferences() {
|
||||
return null;
|
||||
|
@ -63,16 +60,19 @@ export class ContourGeometry extends GeometryBase {
|
|||
return this;
|
||||
}
|
||||
isEmpty() {
|
||||
return !this.m_points.length;
|
||||
return !this.m_contours.length;
|
||||
}
|
||||
measureComplexity() {
|
||||
for (const z of this.m_points) {
|
||||
for (const z of this.m_contours) {
|
||||
if (!isFinite(z.x) || !isFinite(z.y)) return 0xffff;
|
||||
}
|
||||
return this.m_points.length;
|
||||
return this.m_contours.length;
|
||||
}
|
||||
toShapeStringOrNull() {
|
||||
return Format.struct(`ContourGeometry`, Format.list(this.m_points.map(Format.typedPoint)));
|
||||
return Format.struct(
|
||||
`ContourSetGeometry`,
|
||||
Format.list(this.m_contours.map(c => Format.list(c.map(Format.typedPoint))))
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -90,7 +90,12 @@ export class SpiroGeometry extends GeometryBase {
|
|||
asContours() {
|
||||
if (this.m_cachedContours) return this.m_cachedContours;
|
||||
const s = new CurveUtil.BezToContoursSink(this.m_gizmo);
|
||||
SpiroJs.spiroToBezierOnContext(this.m_knots, this.m_closed, s, CurveUtil.SPIRO_PRECISION);
|
||||
SpiroJs.spiroToBezierOnContext(
|
||||
this.m_knots,
|
||||
this.m_closed,
|
||||
s,
|
||||
CurveUtil.GEOMETRY_PRECISION
|
||||
);
|
||||
this.m_cachedContours = s.contours;
|
||||
return this.m_cachedContours;
|
||||
}
|
||||
|
@ -573,6 +578,58 @@ export class BooleanGeometry extends GeometryBase {
|
|||
}
|
||||
}
|
||||
|
||||
// This special geometry type is used in the finalization phase to create TTF contours.
|
||||
export class SimplifyGeometry extends GeometryBase {
|
||||
constructor(g) {
|
||||
super();
|
||||
this.m_geom = g;
|
||||
}
|
||||
asContours() {
|
||||
// Produce simplified arcs
|
||||
let arcs = CurveUtil.convertShapeToArcs(this.m_geom.asContours());
|
||||
if (!this.m_geom.producesSimpleContours()) {
|
||||
arcs = TypoGeom.Boolean.removeOverlap(
|
||||
arcs,
|
||||
TypoGeom.Boolean.PolyFillType.pftNonZero,
|
||||
CurveUtil.BOOLE_RESOLUTION
|
||||
);
|
||||
}
|
||||
|
||||
// Convert to TT curves
|
||||
const sink = new QuadifySink();
|
||||
TypoGeom.ShapeConv.transferGenericShape(
|
||||
TypoGeom.Fairize.fairizeBezierShape(arcs),
|
||||
sink,
|
||||
CurveUtil.GEOMETRY_PRECISION
|
||||
);
|
||||
return sink.contours;
|
||||
}
|
||||
asReferences() {
|
||||
return null;
|
||||
}
|
||||
getDependencies() {
|
||||
return this.m_geom.getDependencies();
|
||||
}
|
||||
unlinkReferences() {
|
||||
return new SimplifyGeometry(this.m_geom.unlinkReferences());
|
||||
}
|
||||
filterTag(fn) {
|
||||
return new SimplifyGeometry(this.m_geom.filterTag(fn));
|
||||
}
|
||||
isEmpty() {
|
||||
return this.m_geom.isEmpty();
|
||||
}
|
||||
measureComplexity() {
|
||||
return this.m_geom.measureComplexity();
|
||||
}
|
||||
toShapeStringOrNull() {
|
||||
const sTarget = this.m_geom.unlinkReferences().toShapeStringOrNull();
|
||||
if (!sTarget) return null;
|
||||
return `SimplifyGeometry{${sTarget}}`;
|
||||
}
|
||||
}
|
||||
|
||||
// Utility functions
|
||||
export function combineWith(a, b) {
|
||||
if (a instanceof CombineGeometry) {
|
||||
return a.with(b);
|
||||
|
|
282
packages/geometry/src/quadify.mjs
Normal file
282
packages/geometry/src/quadify.mjs
Normal file
|
@ -0,0 +1,282 @@
|
|||
import * as TypoGeom from "typo-geom";
|
||||
|
||||
import * as CurveUtil from "./curve-util.mjs";
|
||||
import { Point } from "./point.mjs";
|
||||
|
||||
export class QuadifySink {
|
||||
constructor() {
|
||||
this.contours = [];
|
||||
this.lastContour = [];
|
||||
}
|
||||
beginShape() {}
|
||||
endShape() {
|
||||
if (this.lastContour.length > 2) {
|
||||
let c = this.lastContour;
|
||||
c = this.alignHVKnots(c);
|
||||
c = this.dropDuplicateFirstLast(c);
|
||||
c = this.cleanupOccurrentKnots1(c);
|
||||
c = this.cleanupOccurrentKnots2(c);
|
||||
c = this.cleanupOccurrentKnots1(c);
|
||||
c = this.removeColinearArc(c);
|
||||
c = this.removeColinearCorners(c);
|
||||
c = this.cleanupOccurrentKnots1(c);
|
||||
if (c.length > 2) this.contours.push(c);
|
||||
}
|
||||
this.lastContour = [];
|
||||
}
|
||||
moveTo(x, y) {
|
||||
this.endShape();
|
||||
this.lineTo(x, y);
|
||||
}
|
||||
lineTo(x, y) {
|
||||
this.lastContour.push(Point.fromXY(Point.Type.Corner, x, y));
|
||||
}
|
||||
arcTo(arc, x, y) {
|
||||
const offPoints = TypoGeom.Quadify.auto(arc, 1, 8);
|
||||
for (const z of offPoints) {
|
||||
this.lastContour.push(Point.from(Point.Type.Quadratic, z));
|
||||
}
|
||||
this.lineTo(x, y);
|
||||
}
|
||||
|
||||
// Contour cleaning code
|
||||
alignHVKnots(c0) {
|
||||
const c = c0.slice(0);
|
||||
const alignX = new CoordinateAligner(c, GetX, SetX);
|
||||
const alignY = new CoordinateAligner(c, GetY, SetY);
|
||||
|
||||
for (let i = 0; i < c.length; i++) {
|
||||
const iNext = (i + 1) % c.length,
|
||||
zCurr = c[i],
|
||||
zNext = c[iNext];
|
||||
if (zCurr.type === Point.Type.Quadratic && zNext.type === Point.Type.Corner) {
|
||||
alignX.tryAlign(i, iNext);
|
||||
alignY.tryAlign(i, iNext);
|
||||
} else {
|
||||
alignX.tryAlign(iNext, i);
|
||||
alignY.tryAlign(iNext, i);
|
||||
}
|
||||
}
|
||||
|
||||
alignX.apply();
|
||||
alignY.apply();
|
||||
return c;
|
||||
}
|
||||
|
||||
// Drop the duplicate point (first-last)
|
||||
dropDuplicateFirstLast(c) {
|
||||
while (c.length > 1) {
|
||||
const first = c[0],
|
||||
last = c[c.length - 1];
|
||||
if (
|
||||
first.type === Point.Type.Corner &&
|
||||
last.type === Point.Type.Corner &&
|
||||
isOccurrent(first, last)
|
||||
) {
|
||||
c.pop();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
// Occurrent cleanup -- corner-corner
|
||||
cleanupOccurrentKnots1(c0) {
|
||||
let drops = [];
|
||||
for (let i = 0; i < c0.length; i++) drops[i] = false;
|
||||
for (let i = 0; i < c0.length; i++) {
|
||||
const iPost = (i + 1) % c0.length;
|
||||
const pre = c0[i],
|
||||
post = c0[iPost];
|
||||
if (
|
||||
iPost > 0 &&
|
||||
pre.type === Point.Type.Corner &&
|
||||
post.type === Point.Type.Corner &&
|
||||
isOccurrent(pre, post)
|
||||
) {
|
||||
drops[iPost] = true;
|
||||
}
|
||||
}
|
||||
|
||||
return dropBy(c0, drops);
|
||||
}
|
||||
|
||||
// Occurrent cleanup -- off points
|
||||
// This function actually **INSERTS** points for occurrent off knots.
|
||||
cleanupOccurrentKnots2(c0) {
|
||||
let insertAfter = [];
|
||||
for (let i = 0; i < c0.length; i++) insertAfter[i] = false;
|
||||
for (let i = 0; i < c0.length; i++) {
|
||||
const cur = c0[i];
|
||||
if (cur.type !== Point.Type.Quadratic) continue;
|
||||
|
||||
const iPre = (i - 1 + c0.length) % c0.length;
|
||||
const iPost = (i + 1) % c0.length;
|
||||
const pre = c0[iPre];
|
||||
const post = c0[iPost];
|
||||
|
||||
if (isOccurrent(pre, cur) && post.type === Point.Type.Quadratic) {
|
||||
insertAfter[i] = true;
|
||||
}
|
||||
if (isOccurrent(cur, post) && pre.type === Point.Type.Quadratic) {
|
||||
insertAfter[iPre] = true;
|
||||
}
|
||||
}
|
||||
|
||||
let c1 = [];
|
||||
for (let i = 0; i < c0.length; i++) {
|
||||
const cur = c0[i];
|
||||
c1.push(cur);
|
||||
if (insertAfter[i]) {
|
||||
const iPost = (i + 1) % c0.length;
|
||||
const post = c0[iPost];
|
||||
c1.push(Point.mix(Point.Type.Corner, cur, post, 0.5));
|
||||
}
|
||||
}
|
||||
|
||||
return c1;
|
||||
}
|
||||
|
||||
removeColinearCorners(c0) {
|
||||
const c = c0.slice(0);
|
||||
let found = false;
|
||||
do {
|
||||
found = false;
|
||||
for (let i = 0; i < c.length; i++) {
|
||||
const zPrev = c[(i - 1 + c.length) % c.length],
|
||||
zCurr = c[i],
|
||||
zNext = c[(i + 1) % c.length];
|
||||
if (
|
||||
zPrev.type === Point.Type.Corner &&
|
||||
zNext.type === Point.Type.Corner &&
|
||||
(pointsHVColinear(zPrev, zCurr, zNext) || pointsColinear(zPrev, zCurr, zNext))
|
||||
) {
|
||||
found = true;
|
||||
c.splice(i, 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} while (found);
|
||||
return c;
|
||||
}
|
||||
|
||||
removeColinearArc(c) {
|
||||
if (c[0].type !== Point.Type.Corner) throw new Error("Unreachable");
|
||||
|
||||
let front = 0,
|
||||
shouldRemove = [],
|
||||
middlePoints = [];
|
||||
for (let rear = 1; rear <= c.length; rear++) {
|
||||
let zFront = c[front],
|
||||
zRear = c[rear % c.length];
|
||||
if (zRear.type === Point.Type.Corner) {
|
||||
let allColinear = true;
|
||||
for (const z of middlePoints) {
|
||||
if (!pointsHVColinear(zFront, z, zRear)) allColinear = false;
|
||||
}
|
||||
|
||||
if (allColinear) for (let i = front + 1; i < rear; i++) shouldRemove[i] = true;
|
||||
|
||||
front = rear;
|
||||
middlePoints.length = 0;
|
||||
} else {
|
||||
middlePoints.push(zRear);
|
||||
}
|
||||
}
|
||||
|
||||
return dropBy(c, shouldRemove);
|
||||
}
|
||||
}
|
||||
|
||||
// Disjoint set for coordinate alignment
|
||||
class CoordinateAligner {
|
||||
constructor(c, lens, lensSet) {
|
||||
this.c = c;
|
||||
this.lens = lens;
|
||||
this.lensSet = lensSet;
|
||||
this.rank = [];
|
||||
this.up = [];
|
||||
for (let i = 0; i < c.length; i++) {
|
||||
const x = lens(c[i]);
|
||||
this.up[i] = i;
|
||||
this.rank[i] = Math.abs(x - Math.round(x));
|
||||
}
|
||||
}
|
||||
find(i) {
|
||||
if (this.up[i] !== i) {
|
||||
this.up[i] = this.find(this.up[i]);
|
||||
return this.up[i];
|
||||
} else {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
tryAlign(i, j) {
|
||||
if (occurrentPrecisionEqual(this.lens(this.c[i]), this.lens(this.c[j]))) {
|
||||
this.align(i, j);
|
||||
}
|
||||
}
|
||||
align(i, j) {
|
||||
i = this.find(i);
|
||||
j = this.find(j);
|
||||
if (this.rank[i] > this.rank[j]) [i, j] = [j, i];
|
||||
this.up[j] = i;
|
||||
}
|
||||
apply() {
|
||||
for (let i = 0; i < this.c.length; i++) {
|
||||
this.lensSet(this.c[i], Math.round(this.lens(this.c[this.find(i)])));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Lenses used by aligner
|
||||
const GetX = z => z.x;
|
||||
const SetX = (z, x) => (z.x = x);
|
||||
const GetY = z => z.y;
|
||||
const SetY = (z, y) => (z.y = y);
|
||||
|
||||
function isOccurrent(zFirst, zLast) {
|
||||
return zFirst.x === zLast.x && zFirst.y === zLast.y;
|
||||
}
|
||||
function occurrentPrecisionEqual(a, b) {
|
||||
return Math.abs(a - b) < CurveUtil.OCCURRENT_PRECISION;
|
||||
}
|
||||
function aligned(a, b, c) {
|
||||
return a === b && b === c;
|
||||
}
|
||||
|
||||
function pointsHVColinear(zPrev, zCurr, zNext) {
|
||||
// No need to check in-between-ness, we can safely remove the corner
|
||||
if (aligned(zPrev.x, zCurr.x, zNext.x)) return true;
|
||||
if (aligned(zPrev.y, zCurr.y, zNext.y)) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
function inBetween(a, b, c) {
|
||||
return (a <= b && b <= c) || (c <= b && b <= a);
|
||||
}
|
||||
function pointsColinear(zPrev, zCurr, zNext) {
|
||||
// If zCurr is not in between zPrev and zNext, they are not colinear
|
||||
if (!inBetween(zPrev.x, zCurr.x, zNext.x)) return false;
|
||||
if (!inBetween(zPrev.y, zCurr.y, zNext.y)) return false;
|
||||
|
||||
// Measure the distance of zCurr to the line zPrev--zNext
|
||||
// If it is less than OCCURRENT_PRECISION, then we think it is colinear
|
||||
// Use squared distance to avoid sqrt
|
||||
const dx = zNext.x - zPrev.x,
|
||||
dy = zNext.y - zPrev.y;
|
||||
const t = (zCurr.y - zPrev.y) * dx - (zCurr.x - zPrev.x) * dy;
|
||||
return (
|
||||
t * t < CurveUtil.GEOMETRY_PRECISION * CurveUtil.GEOMETRY_PRECISION * (dx * dx + dy * dy)
|
||||
);
|
||||
}
|
||||
|
||||
// Dropping helper
|
||||
function dropBy(c, shouldRemove) {
|
||||
let n = 0;
|
||||
for (let i = 0; i < c.length; i++) {
|
||||
if (!shouldRemove[i]) c[n++] = c[i];
|
||||
}
|
||||
c.length = n;
|
||||
return c;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue