Optimize memory footprint in outline conversion

This commit is contained in:
be5invis 2023-12-22 07:51:55 -08:00
parent f287d352da
commit e29df67587
10 changed files with 411 additions and 378 deletions

1
package-lock.json generated
View file

@ -4028,6 +4028,7 @@
"name": "@iosevka/geometry-cache",
"version": "28.0.2",
"dependencies": {
"@iosevka/geometry": "28.0.2",
"@msgpack/msgpack": "^2.8.0"
}
},

View file

@ -347,7 +347,7 @@ glyph-block Mark-Above : begin
define cs : new BezToContoursSink
ShapeConv.transferGenericShapeAsBezier {{inner outer}} cs GEOMETRY_PRECISION
currentGlyph.includeContours cs.contours 0 0
currentGlyph.includeContours cs.contours
create-glyph 'tildeAbove' 0x303 : glyph-proc
set-width 0
@ -408,7 +408,7 @@ glyph-block Mark-Above : begin
define cs : new BezToContoursSink
ShapeConv.transferGenericShapeAsBezier arcs cs GEOMETRY_PRECISION
currentGlyph.includeContours cs.contours 0 0
currentGlyph.includeContours cs.contours
create-glyph : glyph-proc
set-width 0

View file

@ -1,8 +1,5 @@
import * as Geom from "@iosevka/geometry";
import * as CurveUtil from "@iosevka/geometry/curve-util";
import { Point } from "@iosevka/geometry/point";
import { Transform } from "@iosevka/geometry/transform";
import * as TypoGeom from "typo-geom";
///////////////////////////////////////////////////////////////////////////////////////////////////
@ -40,41 +37,12 @@ function regulateCompositeGlyph(glyphStore, memo, g) {
if (!gn) return memoSet(memo, g, false);
}
let refGeometries = [];
for (const sr of refs) refGeometries.push(new Geom.ReferenceGeometry(sr.glyph, sr.x, sr.y));
g.geometry = new Geom.CombineGeometry(refGeometries);
return memoSet(memo, g, true);
}
function flattenSimpleGlyph(cache, skew, g) {
const ck = Geom.hashGeometry(g.geometry);
const cached = cache.getGF(ck);
if (ck && cached) {
g.clearGeometry();
g.includeContours(CurveUtil.repToShape(cached), 0, 0);
cache.refreshGF(ck);
} else {
try {
let gSimplified;
if (skew) {
const tfBack = g.gizmo ? g.gizmo.inverse() : new Transform(1, -skew, 0, 1, 0, 0);
const tfForward = g.gizmo ? g.gizmo : new Transform(1, +skew, 0, 1, 0, 0);
gSimplified = new Geom.TransformedGeometry(
new SimplifyGeometry(new Geom.TransformedGeometry(g.geometry, tfBack)),
tfForward
);
} else {
gSimplified = new SimplifyGeometry(g.geometry);
}
const cs = gSimplified.asContours();
g.clearGeometry();
g.includeContours(cs, 0, 0);
if (ck) cache.saveGF(ck, CurveUtil.shapeToRep(cs));
} catch (e) {
console.error("Detected broken geometry when processing", g._m_identifier);
throw e;
}
}
}
function memoSet(memo, g, v) {
memo.set(g, v);
return v;
@ -82,309 +50,34 @@ function memoSet(memo, g, v) {
///////////////////////////////////////////////////////////////////////////////////////////////////
class SimplifyGeometry extends Geom.GeometryBase {
constructor(g) {
super();
this.m_geom = g;
}
asContours() {
// Produce simplified arcs
let arcs = CurveUtil.convertShapeToArcs(this.m_geom.asContours());
if (!this.m_geom.producesSimpleContours()) {
arcs = TypoGeom.Boolean.removeOverlap(
arcs,
TypoGeom.Boolean.PolyFillType.pftNonZero,
CurveUtil.BOOLE_RESOLUTION
function flattenSimpleGlyph(cache, skew, g) {
const ck = Geom.hashGeometry(g.geometry);
const cached = cache.getGF(ck);
if (ck && cached) {
g.clearGeometry();
g.includeContours(cached);
cache.refreshGF(ck);
} else {
try {
let gSimplified;
if (skew) {
const tfBack = g.gizmo ? g.gizmo.inverse() : new Transform(1, -skew, 0, 1, 0, 0);
const tfForward = g.gizmo ? g.gizmo : new Transform(1, +skew, 0, 1, 0, 0);
gSimplified = new Geom.TransformedGeometry(
new Geom.SimplifyGeometry(new Geom.TransformedGeometry(g.geometry, tfBack)),
tfForward
);
}
// Convert to TT curves
const sink = new QuadifySink();
TypoGeom.ShapeConv.transferGenericShape(
TypoGeom.Fairize.fairizeBezierShape(arcs),
sink,
CurveUtil.GEOMETRY_PRECISION
);
return sink.contours;
}
asReferences() {
return null;
}
getDependencies() {
return this.m_geom.getDependencies();
}
filterTag(fn) {
return this.m_geom.filterTag(fn);
}
isEmpty() {
return this.m_geom.isEmpty();
}
measureComplexity() {
return this.m_geom.measureComplexity();
}
toShapeStringOrNull() {
const sTarget = this.m_geom.unlinkReferences().toShapeStringOrNull();
if (!sTarget) return null;
return `SimplifyGeometry{${sTarget}}`;
}
}
class QuadifySink {
constructor() {
this.contours = [];
this.lastContour = [];
}
beginShape() {}
endShape() {
if (this.lastContour.length > 2) {
let c = this.lastContour;
c = this.alignHVKnots(c);
c = this.dropDuplicateFirstLast(c);
c = this.cleanupOccurrentKnots1(c);
c = this.cleanupOccurrentKnots2(c);
c = this.cleanupOccurrentKnots1(c);
c = this.removeColinearArc(c);
c = this.removeColinearCorners(c);
c = this.cleanupOccurrentKnots1(c);
if (c.length > 2) this.contours.push(c);
}
this.lastContour = [];
}
moveTo(x, y) {
this.endShape();
this.lineTo(x, y);
}
lineTo(x, y) {
this.lastContour.push(Point.fromXY(Point.Type.Corner, x, y));
}
arcTo(arc, x, y) {
const offPoints = TypoGeom.Quadify.auto(arc, 1, 8);
for (const z of offPoints) {
this.lastContour.push(Point.from(Point.Type.Quadratic, z));
}
this.lineTo(x, y);
}
// Contour cleaning code
alignHVKnots(c0) {
const c = c0.slice(0);
const alignX = new CoordinateAligner(c, GetX, SetX);
const alignY = new CoordinateAligner(c, GetY, SetY);
for (let i = 0; i < c.length; i++) {
const iNext = (i + 1) % c.length,
zCurr = c[i],
zNext = c[iNext];
if (zCurr.type === Point.Type.Quadratic && zNext.type === Point.Type.Corner) {
alignX.tryAlign(i, iNext);
alignY.tryAlign(i, iNext);
} else {
alignX.tryAlign(iNext, i);
alignY.tryAlign(iNext, i);
}
gSimplified = new Geom.SimplifyGeometry(g.geometry);
}
alignX.apply();
alignY.apply();
return c;
}
// Drop the duplicate point (first-last)
dropDuplicateFirstLast(c) {
while (c.length > 1) {
const first = c[0],
last = c[c.length - 1];
if (
first.type === Point.Type.Corner &&
last.type === Point.Type.Corner &&
isOccurrent(first, last)
) {
c.pop();
} else {
break;
}
}
return c;
}
// Occurrent cleanup -- corner-corner
cleanupOccurrentKnots1(c0) {
let drops = [];
for (let i = 0; i < c0.length; i++) drops[i] = false;
for (let i = 0; i < c0.length; i++) {
const iPost = (i + 1) % c0.length;
const pre = c0[i],
post = c0[iPost];
if (
iPost > 0 &&
pre.type === Point.Type.Corner &&
post.type === Point.Type.Corner &&
isOccurrent(pre, post)
) {
drops[iPost] = true;
}
}
return dropBy(c0, drops);
}
// Occurrent cleanup -- off points
// This function actually **INSERTS** points for occurrent off knots.
cleanupOccurrentKnots2(c0) {
let insertAfter = [];
for (let i = 0; i < c0.length; i++) insertAfter[i] = false;
for (let i = 0; i < c0.length; i++) {
const cur = c0[i];
if (cur.type !== Point.Type.Quadratic) continue;
const iPre = (i - 1 + c0.length) % c0.length;
const iPost = (i + 1) % c0.length;
const pre = c0[iPre];
const post = c0[iPost];
if (isOccurrent(pre, cur) && post.type === Point.Type.Quadratic) {
insertAfter[i] = true;
}
if (isOccurrent(cur, post) && pre.type === Point.Type.Quadratic) {
insertAfter[iPre] = true;
}
}
let c1 = [];
for (let i = 0; i < c0.length; i++) {
const cur = c0[i];
c1.push(cur);
if (insertAfter[i]) {
const iPost = (i + 1) % c0.length;
const post = c0[iPost];
c1.push(Point.mix(Point.Type.Corner, cur, post, 0.5));
}
}
return c1;
}
removeColinearCorners(c0) {
const c = c0.slice(0);
let found = false;
do {
found = false;
for (let i = 0; i < c.length; i++) {
const zPrev = c[(i - 1 + c.length) % c.length],
zCurr = c[i],
zNext = c[(i + 1) % c.length];
if (
zPrev.type === Point.Type.Corner &&
zNext.type === Point.Type.Corner &&
pointsColinear(zPrev, zCurr, zNext)
) {
found = true;
c.splice(i, 1);
break;
}
}
} while (found);
return c;
}
removeColinearArc(c) {
if (c[0].type !== Point.Type.Corner) throw new Error("Unreachable");
let front = 0,
shouldRemove = [],
middlePoints = [];
for (let rear = 1; rear <= c.length; rear++) {
let zFront = c[front],
zRear = c[rear % c.length];
if (zRear.type === Point.Type.Corner) {
let allColinear = true;
for (const z of middlePoints) {
if (!pointsColinear(zFront, z, zRear)) allColinear = false;
}
if (allColinear) for (let i = front + 1; i < rear; i++) shouldRemove[i] = true;
front = rear;
middlePoints.length = 0;
} else {
middlePoints.push(zRear);
}
}
return dropBy(c, shouldRemove);
}
}
// Disjoint set for coordinate alignment
class CoordinateAligner {
constructor(c, lens, lensSet) {
this.c = c;
this.lens = lens;
this.lensSet = lensSet;
this.rank = [];
this.up = [];
for (let i = 0; i < c.length; i++) {
const x = lens(c[i]);
this.up[i] = i;
this.rank[i] = Math.abs(x - Math.round(x));
}
}
find(i) {
if (this.up[i] !== i) {
this.up[i] = this.find(this.up[i]);
return this.up[i];
} else {
return i;
}
}
tryAlign(i, j) {
if (occurrentPrecisionEqual(this.lens(this.c[i]), this.lens(this.c[j]))) {
this.align(i, j);
}
}
align(i, j) {
i = this.find(i);
j = this.find(j);
if (this.rank[i] > this.rank[j]) [i, j] = [j, i];
this.up[j] = i;
}
apply() {
for (let i = 0; i < this.c.length; i++) {
this.lensSet(this.c[i], Math.round(this.lens(this.c[this.find(i)])));
const cs = gSimplified.asContours();
g.clearGeometry();
g.includeContours(cs);
if (ck) cache.saveGF(ck, cs);
} catch (e) {
console.error("Detected broken geometry when processing", g._m_identifier);
throw e;
}
}
}
// Lenses used by aligner
const GetX = z => z.x;
const SetX = (z, x) => (z.x = x);
const GetY = z => z.y;
const SetY = (z, y) => (z.y = y);
function isOccurrent(zFirst, zLast) {
return zFirst.x === zLast.x && zFirst.y === zLast.y;
}
function occurrentPrecisionEqual(a, b) {
return Math.abs(a - b) < CurveUtil.OCCURRENT_PRECISION;
}
function aligned(a, b, c) {
return a === b && b === c;
}
function pointsColinear(zPrev, zCurr, zNext) {
// No need to check in-betweenness, we can safely remove the corner
if (aligned(zPrev.x, zCurr.x, zNext.x)) return true;
if (aligned(zPrev.y, zCurr.y, zNext.y)) return true;
return false;
}
// Dropping helper
function dropBy(c, shouldRemove) {
let n = 0;
for (let i = 0; i < c.length; i++) {
if (!shouldRemove[i]) c[n++] = c[i];
}
c.length = n;
return c;
}

View file

@ -1,3 +1,4 @@
import * as Geom from "@iosevka/geometry";
import { Point } from "@iosevka/geometry/point";
import * as Gr from "@iosevka/glyph/relation";
import { Ot } from "ot-builder";
@ -41,10 +42,12 @@ class MappedGlyphStore {
fill(name, source) {
const g = this.queryBySourceGlyph(source);
if (!g) throw new Error("Unreachable");
// Fill metrics
g.horizontal = { start: 0, end: source.advanceWidth };
// Fill Geometry
if (source.geometry.isEmpty()) return;
if (!source.geometry.isEmpty()) {
const rs = source.geometry.asReferences();
if (rs) {
this.fillReferences(g, rs);
@ -52,6 +55,7 @@ class MappedGlyphStore {
this.fillContours(g, source.geometry.asContours());
}
}
}
fillOtGlyphNames() {
let conflictSet = new Set();
let rev = new Map();

View file

@ -6,6 +6,7 @@
".": "./src/index.mjs"
},
"dependencies": {
"@iosevka/geometry": "28.0.2",
"@msgpack/msgpack": "^2.8.0"
}
}

View file

@ -1,9 +1,10 @@
import fs from "fs";
import zlib from "zlib";
import * as CurveUtil from "@iosevka/geometry/curve-util";
import { encode, decode } from "@msgpack/msgpack";
const Edition = 30;
const Edition = 31;
const MAX_AGE = 16;
class GfEntry {
constructor(age, value) {
@ -23,7 +24,8 @@ class Cache {
this.historyAgeKeys = rep.ageKeys.slice(0, MAX_AGE);
const ageKeySet = new Set(this.historyAgeKeys);
for (const [k, e] of Object.entries(rep.gf)) {
if (ageKeySet.has(e.age)) this.gf.set(k, new GfEntry(e.age, e.value));
if (ageKeySet.has(e.age))
this.gf.set(k, new GfEntry(e.age, CurveUtil.repToShape(e.value)));
}
}
toRep(version, diffOnly) {

View file

@ -67,7 +67,6 @@ function convertContourToArcs(contour) {
return newContour;
}
export const SPIRO_PRECISION = 1 / 2;
export const OCCURRENT_PRECISION = 1 / 16;
export const GEOMETRY_PRECISION = 1 / 4;
export const BOOLE_RESOLUTION = 0x4000;

View file

@ -6,6 +6,7 @@ import * as TypoGeom from "typo-geom";
import * as CurveUtil from "./curve-util.mjs";
import { Point } from "./point.mjs";
import { QuadifySink } from "./quadify.mjs";
import { SpiroExpander } from "./spiro-expand.mjs";
import { Transform } from "./transform.mjs";
@ -39,19 +40,15 @@ export class GeometryBase {
}
}
export class ContourGeometry extends GeometryBase {
constructor(points) {
export class InvalidGeometry extends GeometryBase {}
export class ContourSetGeometry extends GeometryBase {
constructor(contours) {
super();
this.m_points = [];
for (const z of points) {
this.m_points.push(Point.from(z.type, z));
}
this.m_contours = contours;
}
asContours() {
if (this.isEmpty()) return [];
let c1 = [];
for (const z of this.m_points) c1.push(Point.from(z.type, z));
return [c1];
return this.m_contours;
}
asReferences() {
return null;
@ -63,16 +60,19 @@ export class ContourGeometry extends GeometryBase {
return this;
}
isEmpty() {
return !this.m_points.length;
return !this.m_contours.length;
}
measureComplexity() {
for (const z of this.m_points) {
for (const z of this.m_contours) {
if (!isFinite(z.x) || !isFinite(z.y)) return 0xffff;
}
return this.m_points.length;
return this.m_contours.length;
}
toShapeStringOrNull() {
return Format.struct(`ContourGeometry`, Format.list(this.m_points.map(Format.typedPoint)));
return Format.struct(
`ContourSetGeometry`,
Format.list(this.m_contours.map(c => Format.list(c.map(Format.typedPoint))))
);
}
}
@ -90,7 +90,12 @@ export class SpiroGeometry extends GeometryBase {
asContours() {
if (this.m_cachedContours) return this.m_cachedContours;
const s = new CurveUtil.BezToContoursSink(this.m_gizmo);
SpiroJs.spiroToBezierOnContext(this.m_knots, this.m_closed, s, CurveUtil.SPIRO_PRECISION);
SpiroJs.spiroToBezierOnContext(
this.m_knots,
this.m_closed,
s,
CurveUtil.GEOMETRY_PRECISION
);
this.m_cachedContours = s.contours;
return this.m_cachedContours;
}
@ -573,6 +578,58 @@ export class BooleanGeometry extends GeometryBase {
}
}
// This special geometry type is used in the finalization phase to create TTF contours.
export class SimplifyGeometry extends GeometryBase {
constructor(g) {
super();
this.m_geom = g;
}
asContours() {
// Produce simplified arcs
let arcs = CurveUtil.convertShapeToArcs(this.m_geom.asContours());
if (!this.m_geom.producesSimpleContours()) {
arcs = TypoGeom.Boolean.removeOverlap(
arcs,
TypoGeom.Boolean.PolyFillType.pftNonZero,
CurveUtil.BOOLE_RESOLUTION
);
}
// Convert to TT curves
const sink = new QuadifySink();
TypoGeom.ShapeConv.transferGenericShape(
TypoGeom.Fairize.fairizeBezierShape(arcs),
sink,
CurveUtil.GEOMETRY_PRECISION
);
return sink.contours;
}
asReferences() {
return null;
}
getDependencies() {
return this.m_geom.getDependencies();
}
unlinkReferences() {
return new SimplifyGeometry(this.m_geom.unlinkReferences());
}
filterTag(fn) {
return new SimplifyGeometry(this.m_geom.filterTag(fn));
}
isEmpty() {
return this.m_geom.isEmpty();
}
measureComplexity() {
return this.m_geom.measureComplexity();
}
toShapeStringOrNull() {
const sTarget = this.m_geom.unlinkReferences().toShapeStringOrNull();
if (!sTarget) return null;
return `SimplifyGeometry{${sTarget}}`;
}
}
// Utility functions
export function combineWith(a, b) {
if (a instanceof CombineGeometry) {
return a.with(b);

View file

@ -0,0 +1,282 @@
import * as TypoGeom from "typo-geom";
import * as CurveUtil from "./curve-util.mjs";
import { Point } from "./point.mjs";
export class QuadifySink {
constructor() {
this.contours = [];
this.lastContour = [];
}
beginShape() {}
endShape() {
if (this.lastContour.length > 2) {
let c = this.lastContour;
c = this.alignHVKnots(c);
c = this.dropDuplicateFirstLast(c);
c = this.cleanupOccurrentKnots1(c);
c = this.cleanupOccurrentKnots2(c);
c = this.cleanupOccurrentKnots1(c);
c = this.removeColinearArc(c);
c = this.removeColinearCorners(c);
c = this.cleanupOccurrentKnots1(c);
if (c.length > 2) this.contours.push(c);
}
this.lastContour = [];
}
moveTo(x, y) {
this.endShape();
this.lineTo(x, y);
}
lineTo(x, y) {
this.lastContour.push(Point.fromXY(Point.Type.Corner, x, y));
}
arcTo(arc, x, y) {
const offPoints = TypoGeom.Quadify.auto(arc, 1, 8);
for (const z of offPoints) {
this.lastContour.push(Point.from(Point.Type.Quadratic, z));
}
this.lineTo(x, y);
}
// Contour cleaning code
alignHVKnots(c0) {
const c = c0.slice(0);
const alignX = new CoordinateAligner(c, GetX, SetX);
const alignY = new CoordinateAligner(c, GetY, SetY);
for (let i = 0; i < c.length; i++) {
const iNext = (i + 1) % c.length,
zCurr = c[i],
zNext = c[iNext];
if (zCurr.type === Point.Type.Quadratic && zNext.type === Point.Type.Corner) {
alignX.tryAlign(i, iNext);
alignY.tryAlign(i, iNext);
} else {
alignX.tryAlign(iNext, i);
alignY.tryAlign(iNext, i);
}
}
alignX.apply();
alignY.apply();
return c;
}
// Drop the duplicate point (first-last)
dropDuplicateFirstLast(c) {
while (c.length > 1) {
const first = c[0],
last = c[c.length - 1];
if (
first.type === Point.Type.Corner &&
last.type === Point.Type.Corner &&
isOccurrent(first, last)
) {
c.pop();
} else {
break;
}
}
return c;
}
// Occurrent cleanup -- corner-corner
cleanupOccurrentKnots1(c0) {
let drops = [];
for (let i = 0; i < c0.length; i++) drops[i] = false;
for (let i = 0; i < c0.length; i++) {
const iPost = (i + 1) % c0.length;
const pre = c0[i],
post = c0[iPost];
if (
iPost > 0 &&
pre.type === Point.Type.Corner &&
post.type === Point.Type.Corner &&
isOccurrent(pre, post)
) {
drops[iPost] = true;
}
}
return dropBy(c0, drops);
}
// Occurrent cleanup -- off points
// This function actually **INSERTS** points for occurrent off knots.
cleanupOccurrentKnots2(c0) {
let insertAfter = [];
for (let i = 0; i < c0.length; i++) insertAfter[i] = false;
for (let i = 0; i < c0.length; i++) {
const cur = c0[i];
if (cur.type !== Point.Type.Quadratic) continue;
const iPre = (i - 1 + c0.length) % c0.length;
const iPost = (i + 1) % c0.length;
const pre = c0[iPre];
const post = c0[iPost];
if (isOccurrent(pre, cur) && post.type === Point.Type.Quadratic) {
insertAfter[i] = true;
}
if (isOccurrent(cur, post) && pre.type === Point.Type.Quadratic) {
insertAfter[iPre] = true;
}
}
let c1 = [];
for (let i = 0; i < c0.length; i++) {
const cur = c0[i];
c1.push(cur);
if (insertAfter[i]) {
const iPost = (i + 1) % c0.length;
const post = c0[iPost];
c1.push(Point.mix(Point.Type.Corner, cur, post, 0.5));
}
}
return c1;
}
removeColinearCorners(c0) {
const c = c0.slice(0);
let found = false;
do {
found = false;
for (let i = 0; i < c.length; i++) {
const zPrev = c[(i - 1 + c.length) % c.length],
zCurr = c[i],
zNext = c[(i + 1) % c.length];
if (
zPrev.type === Point.Type.Corner &&
zNext.type === Point.Type.Corner &&
(pointsHVColinear(zPrev, zCurr, zNext) || pointsColinear(zPrev, zCurr, zNext))
) {
found = true;
c.splice(i, 1);
break;
}
}
} while (found);
return c;
}
removeColinearArc(c) {
if (c[0].type !== Point.Type.Corner) throw new Error("Unreachable");
let front = 0,
shouldRemove = [],
middlePoints = [];
for (let rear = 1; rear <= c.length; rear++) {
let zFront = c[front],
zRear = c[rear % c.length];
if (zRear.type === Point.Type.Corner) {
let allColinear = true;
for (const z of middlePoints) {
if (!pointsHVColinear(zFront, z, zRear)) allColinear = false;
}
if (allColinear) for (let i = front + 1; i < rear; i++) shouldRemove[i] = true;
front = rear;
middlePoints.length = 0;
} else {
middlePoints.push(zRear);
}
}
return dropBy(c, shouldRemove);
}
}
// Disjoint set for coordinate alignment
class CoordinateAligner {
constructor(c, lens, lensSet) {
this.c = c;
this.lens = lens;
this.lensSet = lensSet;
this.rank = [];
this.up = [];
for (let i = 0; i < c.length; i++) {
const x = lens(c[i]);
this.up[i] = i;
this.rank[i] = Math.abs(x - Math.round(x));
}
}
find(i) {
if (this.up[i] !== i) {
this.up[i] = this.find(this.up[i]);
return this.up[i];
} else {
return i;
}
}
tryAlign(i, j) {
if (occurrentPrecisionEqual(this.lens(this.c[i]), this.lens(this.c[j]))) {
this.align(i, j);
}
}
align(i, j) {
i = this.find(i);
j = this.find(j);
if (this.rank[i] > this.rank[j]) [i, j] = [j, i];
this.up[j] = i;
}
apply() {
for (let i = 0; i < this.c.length; i++) {
this.lensSet(this.c[i], Math.round(this.lens(this.c[this.find(i)])));
}
}
}
// Lenses used by aligner
const GetX = z => z.x;
const SetX = (z, x) => (z.x = x);
const GetY = z => z.y;
const SetY = (z, y) => (z.y = y);
function isOccurrent(zFirst, zLast) {
return zFirst.x === zLast.x && zFirst.y === zLast.y;
}
function occurrentPrecisionEqual(a, b) {
return Math.abs(a - b) < CurveUtil.OCCURRENT_PRECISION;
}
function aligned(a, b, c) {
return a === b && b === c;
}
function pointsHVColinear(zPrev, zCurr, zNext) {
// No need to check in-between-ness, we can safely remove the corner
if (aligned(zPrev.x, zCurr.x, zNext.x)) return true;
if (aligned(zPrev.y, zCurr.y, zNext.y)) return true;
return false;
}
function inBetween(a, b, c) {
return (a <= b && b <= c) || (c <= b && b <= a);
}
function pointsColinear(zPrev, zCurr, zNext) {
// If zCurr is not in between zPrev and zNext, they are not colinear
if (!inBetween(zPrev.x, zCurr.x, zNext.x)) return false;
if (!inBetween(zPrev.y, zCurr.y, zNext.y)) return false;
// Measure the distance of zCurr to the line zPrev--zNext
// If it is less than OCCURRENT_PRECISION, then we think it is colinear
// Use squared distance to avoid sqrt
const dx = zNext.x - zPrev.x,
dy = zNext.y - zPrev.y;
const t = (zCurr.y - zPrev.y) * dx - (zCurr.x - zPrev.x) * dy;
return (
t * t < CurveUtil.GEOMETRY_PRECISION * CurveUtil.GEOMETRY_PRECISION * (dx * dx + dy * dy)
);
}
// Dropping helper
function dropBy(c, shouldRemove) {
let n = 0;
for (let i = 0; i < c.length; i++) {
if (!shouldRemove[i]) c[n++] = c[i];
}
c.length = n;
return c;
}

View file

@ -123,14 +123,8 @@ export class Glyph {
if (this.ctxTag) g = new Geom.TaggedGeometry(g, this.ctxTag);
this.geometry = Geom.combineWith(this.geometry, g);
}
includeContours(cs, shiftX, shiftY) {
let parts = [];
for (const contour of cs) {
let c = [];
for (const z of contour) c.push(Point.translated(z, shiftX, shiftY));
parts.push(new Geom.ContourGeometry(c));
}
this.includeGeometry(new Geom.CombineGeometry(parts));
includeContours(cs) {
this.includeGeometry(new Geom.ContourSetGeometry(cs));
}
applyTransform(tfm, alsoAnchors) {
this.geometry = new Geom.TransformedGeometry(this.geometry, tfm);