Iosevka/packages/geometry/src/index.mjs
Belleve 733f56fe79
Fix the design of the ESTIMATED SYMBOL (U+212E) to match its spec; Refine design of POWER SYMBOL (U+23FB) and HEAVY CHECK MARK (U+2714) (#2245)
* Make estimated sign match its spec

* Refine power standby symbol

* Check mark refinement

* Doc

* fmt
2024-03-19 03:37:17 +00:00

668 lines
16 KiB
JavaScript

import crypto from "crypto";
import * as Format from "@iosevka/util/formatter";
import * as TypoGeom from "typo-geom";
import * as CurveUtil from "./curve-util.mjs";
import { Point } from "./point.mjs";
import { QuadifySink } from "./quadify.mjs";
import { SpiroExpander } from "./spiro-expand.mjs";
import { spiroToOutline } from "./spiro-to-outline.mjs";
import { strokeArcs } from "./stroke.mjs";
import { Transform } from "./transform.mjs";
export const CPLX_NON_EMPTY = 0x01; // A geometry tree that is not empty
export const CPLX_NON_SIMPLE = 0x02; // A geometry tree that contains non-simple contours
export const CPLX_BROKEN = 0x04; // A geometry tree that contains broken contours, like having points with NaN coordinates
export const CPLX_UNKNOWN = 0xff;
export class GeometryBase {
toContours() {
throw new Error("Unimplemented");
}
toReferences() {
throw new Error("Unimplemented");
}
getDependencies() {
throw new Error("Unimplemented");
}
unlinkReferences() {
return this;
}
filterTag(fn) {
return this;
}
measureComplexity() {
return CPLX_UNKNOWN;
}
toShapeStringOrNull() {
return null;
}
}
export class InvalidGeometry extends GeometryBase {}
export class ContourSetGeometry extends GeometryBase {
constructor(contours) {
super();
this.m_contours = contours;
}
toContours() {
return this.m_contours;
}
toReferences() {
return null;
}
getDependencies() {
return null;
}
filterTag(fn) {
return this;
}
measureComplexity() {
let cp = this.m_contours.length > 0 ? CPLX_NON_EMPTY : 0;
for (const c of this.m_contours) {
for (const z of c) {
if (!isFinite(z.x) || !isFinite(z.y)) cp |= CPLX_BROKEN;
}
}
return cp;
}
toShapeStringOrNull() {
return Format.struct(
`ContourSetGeometry`,
Format.list(this.m_contours.map(c => Format.list(c.map(Format.typedPoint)))),
);
}
}
export class SpiroGeometry extends GeometryBase {
constructor(gizmo, closed, knots) {
super();
this.m_knots = knots;
this.m_closed = closed;
this.m_gizmo = gizmo;
this.m_cachedContours = null;
}
toContours() {
if (this.m_cachedContours) return this.m_cachedContours;
this.m_cachedContours = spiroToOutline(this.m_knots, this.m_closed, this.m_gizmo);
return this.m_cachedContours;
}
toReferences() {
return null;
}
getDependencies() {
return null;
}
filterTag(fn) {
return this;
}
measureComplexity() {
let cplx = CPLX_NON_EMPTY | CPLX_NON_SIMPLE;
for (const z of this.m_knots) {
if (!isFinite(z.x) || !isFinite(z.y)) cplx |= CPLX_BROKEN;
}
return cplx;
}
toShapeStringOrNull() {
return Format.struct(
"SpiroGeometry",
Format.gizmo(this.m_gizmo),
this.m_closed,
Format.list(this.m_knots.map(k => k.toShapeString())),
);
}
}
export class DiSpiroGeometry extends GeometryBase {
constructor(gizmo, contrast, closed, biKnots) {
super();
this.m_biKnots = biKnots; // untransformed
this.m_closed = closed;
this.m_gizmo = gizmo;
this.m_contrast = contrast;
this.m_cachedExpansionResults = null;
this.m_cachedContours = null;
}
toContours() {
if (this.m_cachedContours) return this.m_cachedContours;
const expandResult = this.expand();
const lhs = [...expandResult.lhsUntransformed];
const rhs = [...expandResult.rhsUntransformed];
// Reverse the RHS
for (const k of rhs) k.reverseType();
rhs.reverse();
let outlineGeometry;
if (this.m_closed) {
outlineGeometry = new CombineGeometry([
new SpiroGeometry(this.m_gizmo, true, lhs),
new SpiroGeometry(this.m_gizmo, true, rhs),
]);
} else {
lhs[0].type = lhs[lhs.length - 1].type = "corner";
rhs[0].type = rhs[rhs.length - 1].type = "corner";
const allKnots = lhs.concat(rhs);
outlineGeometry = new SpiroGeometry(this.m_gizmo, true, allKnots);
}
this.m_cachedContours = outlineGeometry.toContours();
return this.m_cachedContours;
}
expand() {
if (this.m_cachedExpansionResults) return this.m_cachedExpansionResults;
const expander = new SpiroExpander(
this.m_gizmo,
this.m_contrast,
this.m_closed,
this.m_biKnots,
);
expander.initializeNormals();
expander.iterateNormals();
expander.iterateNormals();
expander.iterateNormals();
expander.iterateNormals();
this.m_cachedExpansionResults = expander.expand();
return this.m_cachedExpansionResults;
}
toReferences() {
return null;
}
getDependencies() {
return null;
}
filterTag(fn) {
return this;
}
measureComplexity() {
let cplx = CPLX_NON_EMPTY | CPLX_NON_SIMPLE;
for (const z of this.m_biKnots) {
if (!isFinite(z.x) || !isFinite(z.y)) cplx |= CPLX_BROKEN;
}
return cplx;
}
toShapeStringOrNull() {
return Format.struct(
"DiSpiroGeometry",
Format.gizmo(this.m_gizmo),
Format.n(this.m_contrast),
this.m_closed,
Format.list(this.m_biKnots.map(z => z.toShapeString())),
);
}
}
export class ReferenceGeometry extends GeometryBase {
constructor(glyph, x, y) {
super();
if (!glyph || !glyph.geometry) throw new TypeError("Invalid glyph");
this.m_glyph = glyph;
this.m_x = x || 0;
this.m_y = y || 0;
}
unwrap() {
return new TransformedGeometry(
Transform.Translate(this.m_x, this.m_y),
this.m_glyph.geometry,
);
}
toContours() {
return this.unwrap().toContours();
}
toReferences() {
if (this.m_glyph.geometry.measureComplexity() & CPLX_NON_EMPTY) {
return [{ glyph: this.m_glyph, x: this.m_x, y: this.m_y }];
} else {
// A reference to a space is meaningless, thus return nothing
return [];
}
}
getDependencies() {
return [this.m_glyph];
}
filterTag(fn) {
return this.unwrap().filterTag(fn);
}
measureComplexity() {
return this.m_glyph.geometry.measureComplexity();
}
unlinkReferences() {
return this.unwrap().unlinkReferences();
}
toShapeStringOrNull() {
let sTarget = this.m_glyph.geometry.toShapeStringOrNull();
if (!sTarget) return null;
return Format.struct("ReferenceGeometry", sTarget, Format.n(this.m_x), Format.n(this.m_y));
}
}
export class TaggedGeometry extends GeometryBase {
constructor(g, tag) {
super();
this.m_geom = g;
this.m_tag = tag;
}
toContours() {
return this.m_geom.toContours();
}
toReferences() {
return this.m_geom.toReferences();
}
getDependencies() {
return this.m_geom.getDependencies();
}
filterTag(fn) {
if (!fn(this.m_tag)) return null;
else return new TaggedGeometry(this.m_geom.filterTag(fn), this.m_tag);
}
measureComplexity() {
return this.m_geom.measureComplexity();
}
unlinkReferences() {
return this.m_geom.unlinkReferences();
}
toShapeStringOrNull() {
return this.m_geom.toShapeStringOrNull();
}
}
export class TransformedGeometry extends GeometryBase {
constructor(tfm, g) {
super();
this.m_transform = tfm;
this.m_geom = g;
}
withTransform(tfm) {
return new TransformedGeometry(Transform.Combine(this.m_transform, tfm), this.m_geom);
}
toContours() {
let result = [];
for (const c of this.m_geom.toContours()) {
let c1 = [];
for (const z of c) c1.push(Point.transformed(this.m_transform, z));
result.push(c1);
}
return result;
}
toReferences() {
if (!Transform.isTranslate(this.m_transform)) return null;
const rs = this.m_geom.toReferences();
if (!rs) return null;
let result = [];
for (const { glyph, x, y } of rs)
result.push({ glyph, x: x + this.m_transform.tx, y: y + this.m_transform.ty });
return result;
}
getDependencies() {
return this.m_geom.getDependencies();
}
filterTag(fn) {
const e = this.m_geom.filterTag(fn);
if (!e) return null;
return new TransformedGeometry(this.m_transform, e);
}
measureComplexity() {
return (
(Transform.isPositive(this.m_transform) ? 0 : CPLX_NON_SIMPLE) |
this.m_geom.measureComplexity()
);
}
unlinkReferences() {
const unwrapped = this.m_geom.unlinkReferences();
if (Transform.isIdentity(this.m_transform)) {
return unwrapped;
} else if (unwrapped instanceof TransformedGeometry) {
return unwrapped.withTransform(this.m_transform);
} else {
return new TransformedGeometry(this.m_transform, unwrapped);
}
}
toShapeStringOrNull() {
const sTarget = this.m_geom.toShapeStringOrNull();
if (!sTarget) return null;
return Format.struct("TransformedGeometry", Format.gizmo(this.m_transform), sTarget);
}
}
export class RadicalGeometry extends GeometryBase {
constructor(g) {
super();
this.m_geom = g;
}
toContours() {
return this.m_geom.toContours();
}
toReferences() {
return null;
}
getDependencies() {
return this.m_geom.getDependencies();
}
filterTag(fn) {
const e = this.m_geom.filterTag(fn);
if (!e) return null;
return new RadicalGeometry(e);
}
measureComplexity() {
return this.m_geom.measureComplexity();
}
unlinkReferences() {
return this.m_geom.unlinkReferences();
}
toShapeStringOrNull() {
const sTarget = this.m_geom.toShapeStringOrNull();
if (!sTarget) return null;
return Format.struct("RadicalGeometry", sTarget);
}
}
export class CombineGeometry extends GeometryBase {
constructor(parts) {
super();
this.m_parts = parts || [];
}
with(g) {
if (g instanceof CombineGeometry) {
return new CombineGeometry([...this.m_parts, ...g.m_parts]);
} else {
return new CombineGeometry([...this.m_parts, g]);
}
}
toContours() {
let results = [];
for (const part of this.m_parts) {
for (const c of part.toContours()) {
results.push(c);
}
}
return results;
}
toReferences() {
let results = [];
for (const part of this.m_parts) {
const rs = part.toReferences();
if (!rs) return null;
for (const c of rs) {
results.push(c);
}
}
return results;
}
getDependencies() {
let results = [];
for (const part of this.m_parts) {
const rs = part.getDependencies();
if (!rs) continue;
for (const c of rs) results.push(c);
}
return results;
}
filterTag(fn) {
let filtered = [];
for (const part of this.m_parts) {
const fp = part.filterTag(fn);
if (fp) filtered.push(fp);
}
return new CombineGeometry(filtered);
}
measureComplexity() {
let s = 0;
for (const part of this.m_parts) s |= part.measureComplexity();
return s;
}
unlinkReferences() {
let parts = [];
for (const part of this.m_parts) {
const unwrapped = part.unlinkReferences();
if (unwrapped instanceof CombineGeometry) {
for (const p of unwrapped.m_parts) parts.push(p);
} else {
parts.push(unwrapped);
}
}
return new CombineGeometry(parts);
}
toShapeStringOrNull() {
let sParts = [];
for (const item of this.m_parts) {
const sPart = item.toShapeStringOrNull();
if (!sPart) return null;
sParts.push(sPart);
}
return Format.struct("CombineGeometry", Format.list(sParts));
}
}
export class BooleanGeometry extends GeometryBase {
constructor(operator, operands) {
super();
this.m_operator = operator;
this.m_operands = operands;
this.m_resolved = null;
}
toContours() {
if (this.m_resolved) return this.m_resolved;
this.m_resolved = this.asContoursImpl();
return this.m_resolved;
}
asContoursImpl() {
if (this.m_operands.length === 0) return [];
const stack = [];
this.asOpStackImpl(stack);
const arcs = TypoGeom.Boolean.combineStack(stack, CurveUtil.BOOLE_RESOLUTION);
const ctx = new CurveUtil.BezToContoursSink();
TypoGeom.ShapeConv.transferBezArcShape(arcs, ctx);
return ctx.contours;
}
asOpStackImpl(sink) {
if (this.m_operands.length === 0) {
sink.push({
type: "operand",
fillType: TypoGeom.Boolean.PolyFillType.pftNonZero,
shape: [],
});
return;
}
for (const [i, operand] of this.m_operands.entries()) {
// Push operand
if (operand instanceof BooleanGeometry) {
operand.asOpStackImpl(sink);
} else {
sink.push({
type: "operand",
fillType: TypoGeom.Boolean.PolyFillType.pftNonZero,
shape: CurveUtil.convertShapeToArcs(operand.toContours()),
});
}
// Push operator if i > 0
if (i > 0) sink.push({ type: "operator", operator: this.m_operator });
}
}
toReferences() {
return null;
}
getDependencies() {
let results = [];
for (const part of this.m_operands) {
const rs = part.getDependencies();
if (!rs) continue;
for (const c of rs) results.push(c);
}
return results;
}
filterTag(fn) {
let filtered = [];
for (const operand of this.m_operands) {
const fp = operand.filterTag(fn);
if (fp) filtered.push(fp);
}
return new BooleanGeometry(this.m_operator, filtered);
}
measureComplexity() {
let s = CPLX_NON_SIMPLE;
for (const operand of this.m_operands) s |= operand.measureComplexity();
return s;
}
unlinkReferences() {
if (this.m_operands.length === 0) return new CombineGeometry([]);
if (this.m_operands.length === 1) return this.m_operands[0].unlinkReferences();
let operands = [];
for (const operand of this.m_operands) {
operands.push(operand.unlinkReferences());
}
return new BooleanGeometry(this.m_operator, operands);
}
toShapeStringOrNull() {
let sParts = [];
for (const item of this.m_operands) {
const sPart = item.toShapeStringOrNull();
if (!sPart) return null;
sParts.push(sPart);
}
return Format.struct("BooleanGeometry", this.m_operator, Format.list(sParts));
}
}
export class StrokeGeometry extends GeometryBase {
constructor(geom, gizmo, radius, contrast, fInside) {
super();
this.m_geom = geom;
this.m_gizmo = gizmo;
this.m_radius = radius;
this.m_contrast = contrast;
this.m_fInside = fInside;
}
toContours() {
// Produce simplified arcs
const nonTransformedGeometry = new TransformedGeometry(this.m_gizmo.inverse(), this.m_geom);
let arcs = TypoGeom.Boolean.removeOverlap(
CurveUtil.convertShapeToArcs(nonTransformedGeometry.toContours()),
TypoGeom.Boolean.PolyFillType.pftNonZero,
CurveUtil.BOOLE_RESOLUTION,
);
// Fairize to get get some arcs that are simple enough
const fairizedArcs = TypoGeom.Fairize.fairizeBezierShape(arcs);
// Stroke the arcs
const strokedArcs = strokeArcs(
fairizedArcs,
this.m_radius,
this.m_contrast,
this.m_fInside,
);
// Convert to Iosevka format
let sink = new CurveUtil.BezToContoursSink(this.m_gizmo);
TypoGeom.ShapeConv.transferBezArcShape(strokedArcs, sink, CurveUtil.GEOMETRY_PRECISION);
return sink.contours;
}
toReferences() {
return null;
}
getDependencies() {
return this.m_geom.getDependencies();
}
unlinkReferences() {
return new StrokeGeometry(
this.m_geom.unlinkReferences(),
this.m_gizmo,
this.m_radius,
this.m_contrast,
this.m_fInside,
);
}
filterTag(fn) {
return new StrokeGeometry(
this.m_geom.filterTag(fn),
this.m_gizmo,
this.m_radius,
this.m_contrast,
this.m_fInside,
);
}
measureComplexity() {
return this.m_geom.measureComplexity() | CPLX_NON_SIMPLE;
}
toShapeStringOrNull() {
const sTarget = this.m_geom.unlinkReferences().toShapeStringOrNull();
if (!sTarget) return null;
return Format.struct(
`StrokeGeometry`,
sTarget,
Format.gizmo(this.m_gizmo),
Format.n(this.m_radius),
Format.n(this.m_contrast),
this.m_fInside,
);
}
}
// This special geometry type is used in the finalization phase to create TTF contours.
export class SimplifyGeometry extends GeometryBase {
constructor(g) {
super();
this.m_geom = g;
}
toContours() {
// Produce simplified arcs
let arcs = CurveUtil.convertShapeToArcs(this.m_geom.toContours());
if (this.m_geom.measureComplexity() & CPLX_NON_SIMPLE) {
arcs = TypoGeom.Boolean.removeOverlap(
arcs,
TypoGeom.Boolean.PolyFillType.pftNonZero,
CurveUtil.BOOLE_RESOLUTION,
);
}
// Convert to TT curves
const sink = new QuadifySink();
TypoGeom.ShapeConv.transferGenericShape(
TypoGeom.Fairize.fairizeBezierShape(arcs),
sink,
CurveUtil.GEOMETRY_PRECISION,
);
return sink.contours;
}
toReferences() {
return null;
}
getDependencies() {
return this.m_geom.getDependencies();
}
unlinkReferences() {
return new SimplifyGeometry(this.m_geom.unlinkReferences());
}
filterTag(fn) {
return new SimplifyGeometry(this.m_geom.filterTag(fn));
}
measureComplexity() {
return this.m_geom.measureComplexity();
}
toShapeStringOrNull() {
const sTarget = this.m_geom.unlinkReferences().toShapeStringOrNull();
if (!sTarget) return null;
return `SimplifyGeometry{${sTarget}}`;
}
}
// Utility functions
export function combineWith(a, b) {
if (a instanceof CombineGeometry) {
return a.with(b);
} else {
return new CombineGeometry([a, b]);
}
}
export function hashGeometry(geom) {
const s = geom.toShapeStringOrNull();
if (!s) return null;
return crypto.createHash("sha256").update(s).digest("hex");
}