Iosevka/packages/geometry/src/spiro-expand.mjs

318 lines
8.5 KiB
JavaScript

import { linreg, mix } from "@iosevka/util";
import * as SpiroJs from "spiro";
import { Vec2 } from "./point.mjs";
import { MonoKnot } from "./spiro-to-outline.mjs";
///////////////////////////////////////////////////////////////////////////////////////////////////
export class BiKnotCollector {
constructor(contrast) {
this.contrast = contrast; // stroke contrast
this.defaultD1 = 0; // default LHS
this.defaultD2 = 0; // default RHS sw
this.lastKnot = null; // last knot in the processed items
this.knots = []; // all the control items
this.closed = false; // whether the shape is closed
this.m_finished = false;
}
get controls() {
throw new Error("Not implemented");
}
finish() {
this.m_finished = true;
}
pushKnot(c) {
if (this.m_finished) throw new Error("Cannot push knot after finish");
let k;
if (this.lastKnot) {
k = new BiKnot(c.type, c.x, c.y, this.lastKnot.d1, this.lastKnot.d2);
} else {
k = new BiKnot(c.type, c.x, c.y, this.defaultD1, this.defaultD2);
}
this.knots.push(k);
this.lastKnot = k;
c.applyTo(this);
}
setWidth(l, r) {
if (this.lastKnot) {
this.lastKnot.d1 = l;
this.lastKnot.d2 = r;
} else {
this.defaultD1 = l;
this.defaultD2 = r;
}
}
headsTo(direction) {
if (this.lastKnot) {
this.lastKnot.proposedNormal = direction;
}
}
setImportant() {
if (this.lastKnot) {
this.lastKnot.unimportant = 0;
}
}
setUnimportant() {
if (this.lastKnot) {
this.lastKnot.unimportant = 1;
}
}
setContrast(c) {
this.contrast = c;
}
getMonoKnots() {
let a = [];
for (const c of this.knots) {
a.push(c.toMono());
}
return a;
}
}
export class BiKnot {
constructor(type, x, y, d1, d2) {
this.type = type;
this.x = x;
this.y = y;
this.d1 = d1;
this.d2 = d2;
this.proposedNormal = null;
this.unimportant = 0;
// Derived properties
this.origTangent = null;
}
clone() {
const k1 = new BiKnot(this.type, this.x, this.y, this.d1, this.d2);
k1.origTangent = this.origTangent;
k1.proposedNormal = this.proposedNormal;
k1.unimportant = this.unimportant;
return k1;
}
withGizmo(gizmo) {
const tfZ = gizmo.applyXY(this.x, this.y);
const k1 = new BiKnot(this.type, tfZ.x, tfZ.y, this.d1, this.d2);
k1.origTangent = this.origTangent ? gizmo.applyOffset(this.origTangent) : null;
k1.proposedNormal = this.proposedNormal ? gizmo.applyOffset(this.proposedNormal) : null;
k1.unimportant = this.unimportant;
return k1;
}
hash(h) {
h.beginStruct("BiKnot");
h.str(this.type);
h.bool(this.unimportant);
h.f64(this.x);
h.f64(this.y);
h.bool(this.d1 != null);
if (this.d1 != null) h.f64(this.d1);
h.bool(this.d2 != null);
if (this.d2 != null) h.f64(this.d2);
h.bool(this.proposedNormal != null);
if (this.proposedNormal) {
h.f64(this.proposedNormal.x);
h.f64(this.proposedNormal.y);
}
h.endStruct();
}
toMono() {
return new MonoKnot(this.type, this.unimportant, this.x, this.y);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
export class SpiroExpander {
constructor(gizmo, contrast, closed, biKnots) {
this.m_gizmo = gizmo;
this.m_contrast = contrast;
this.m_closed = closed;
this.m_biKnotsU = Array.from(biKnots);
this.m_biKnotsT = biKnots.map(k => k.withGizmo(gizmo));
}
initializeNormals() {
const normalRectifier = new NormalRectifier(this.m_biKnotsT, this.m_gizmo);
SpiroJs.spiroToArcsOnContext(this.m_biKnotsT, this.m_closed, normalRectifier);
}
iterateNormals() {
const centerBone = this.getPass2Knots();
const normalRectifier = new NormalRectifier(this.m_biKnotsT, this.m_gizmo);
SpiroJs.spiroToArcsOnContext(centerBone, this.m_closed, normalRectifier);
return normalRectifier.totalDelta / normalRectifier.nKnotsProcessed;
}
getPass2Knots() {
const expanded = this.expand(this.m_contrast);
const middles = [];
for (let j = 0; j < this.m_biKnotsT.length; j++) {
const lhs = expanded.lhs[j];
const rhs = expanded.rhs[j];
middles[j] = new MonoKnot(
this.m_biKnotsT[j].type,
this.m_biKnotsT[j].unimportant,
mix(lhs.x, rhs.x, 0.5),
mix(lhs.y, rhs.y, 0.5),
);
}
return middles;
}
expand() {
const lhsT = [], // transformed LHS
rhsT = [], // transformed RHS
lhsU = [], // untransformed LHS
rhsU = []; // untransformed RHS
for (let j = 0; j < this.m_biKnotsT.length; j++) {
const bk = this.m_biKnotsT[j];
lhsT[j] = new MonoKnot(bk.type, bk.unimportant, 0, 0);
rhsT[j] = new MonoKnot(bk.type, bk.unimportant, 0, 0);
lhsU[j] = new MonoKnot(bk.type, bk.unimportant, 0, 0);
rhsU[j] = new MonoKnot(bk.type, bk.unimportant, 0, 0);
}
for (let j = 0; j < this.m_biKnotsT.length; j++) {
const knotT = this.m_biKnotsT[j];
if (knotT.unimportant) continue;
let dx, dy;
if (knotT.proposedNormal) {
dx = knotT.proposedNormal.x;
dy = knotT.proposedNormal.y;
} else {
dx = normalX(knotT.origTangent, this.m_contrast);
dy = normalY(knotT.origTangent, this.m_contrast);
}
lhsT[j].x = knotT.x + knotT.d1 * dx;
lhsT[j].y = knotT.y + knotT.d1 * dy;
rhsT[j].x = knotT.x - knotT.d2 * dx;
rhsT[j].y = knotT.y - knotT.d2 * dy;
this.m_gizmo.unapplyToSink(lhsT[j], lhsU[j]);
this.m_gizmo.unapplyToSink(rhsT[j], rhsU[j]);
}
this.interpolateUnimportantKnots(lhsT, rhsT, lhsU, rhsU);
return { lhs: lhsT, rhs: rhsT, lhsUntransformed: lhsU, rhsUntransformed: rhsU };
}
interpolateUnimportantKnots(lhsT, rhsT, lhsU, rhsU) {
let firstImportantIdx = -1;
let lastImportantIdx = -1;
for (let j = 0; j < this.m_biKnotsU.length; j++) {
// If the current knot is unimportant, skip it
if (this.m_biKnotsU[j].unimportant) continue;
// If we've scanned an important knot before, interpolate the unimportant knots between
if (lastImportantIdx !== -1) {
this.interpolateUnimportantKnotsRg(lhsT, rhsT, lhsU, rhsU, lastImportantIdx, j);
}
if (firstImportantIdx === -1) firstImportantIdx = j;
lastImportantIdx = j;
}
// Handle the last important ... first important wraparound
if (firstImportantIdx !== -1 && lastImportantIdx !== -1) {
this.interpolateUnimportantKnotsRg(
lhsT,
rhsT,
lhsU,
rhsU,
lastImportantIdx,
firstImportantIdx,
);
}
}
interpolateUnimportantKnotsRg(lhsT, rhsT, lhsU, rhsU, jBefore, jAfter) {
let count = jAfter > jBefore ? jAfter - jBefore : lhsT.length - jBefore + jAfter;
for (let offset = 1; offset < count; offset++) {
let j = (jBefore + offset) % lhsT.length;
const knotUBefore = this.m_biKnotsU[jBefore],
knotU = this.m_biKnotsU[j],
knotUAfter = this.m_biKnotsU[jAfter],
lhsUBefore = lhsU[jBefore],
lhsUAfter = lhsU[jAfter],
rhsUBefore = rhsU[jBefore],
rhsUAfter = rhsU[jAfter];
lhsU[j].x = linreg(knotUBefore.x, lhsUBefore.x, knotUAfter.x, lhsUAfter.x, knotU.x);
lhsU[j].y = linreg(knotUBefore.y, lhsUBefore.y, knotUAfter.y, lhsUAfter.y, knotU.y);
rhsU[j].x = linreg(knotUBefore.x, rhsUBefore.x, knotUAfter.x, rhsUAfter.x, knotU.x);
rhsU[j].y = linreg(knotUBefore.y, rhsUBefore.y, knotUAfter.y, rhsUAfter.y, knotU.y);
this.m_gizmo.applyToSink(lhsU[j], lhsT[j]);
this.m_gizmo.applyToSink(rhsU[j], rhsT[j]);
}
}
}
class NormalRectifier {
constructor(stage1ControlKnots, gizmo) {
this.m_gizmo = gizmo;
this.m_biKnots = stage1ControlKnots;
this.nKnotsProcessed = 0;
this.totalDelta = 0;
}
beginShape() {}
endShape() {}
moveTo(x, y) {
this.nKnotsProcessed += 1;
}
arcTo(arc, x, y) {
if (this.nKnotsProcessed === 1) {
const d = new Vec2(arc.deriveX0, arc.deriveY0);
if (isTangentValid(d)) {
this.updateKnotTangent(this.m_biKnots[0], d);
} else {
throw new Error("NaN angle detected.");
}
}
if (this.m_biKnots[this.nKnotsProcessed]) {
const d = new Vec2(arc.deriveX1, arc.deriveY1);
if (isTangentValid(d)) {
this.updateKnotTangent(this.m_biKnots[this.nKnotsProcessed], d);
} else {
throw new Error("NaN angle detected.");
}
}
this.nKnotsProcessed += 1;
}
updateKnotTangent(knot, d) {
if (isTangentValid(knot.origTangent)) {
this.totalDelta +=
(d.x - knot.origTangent.x) * (d.x - knot.origTangent.x) +
(d.y - knot.origTangent.y) * (d.y - knot.origTangent.y);
} else {
this.totalDelta += 4;
}
knot.origTangent = d;
}
}
function isTangentValid(d) {
return d && isFinite(d.x) && isFinite(d.y);
}
function normalX(tangent, contrast) {
return contrast * (-tangent.y / Math.hypot(tangent.x, tangent.y));
}
function normalY(tangent) {
return tangent.x / Math.hypot(tangent.x, tangent.y);
}
function cyNth(a, j) {
return a[j % a.length];
}