Iosevka/packages/geometry/src/quadify.mjs

282 lines
6.8 KiB
JavaScript

import * as TypoGeom from "typo-geom";
import * as CurveUtil from "./curve-util.mjs";
import { Point } from "./point.mjs";
export class QuadifySink {
constructor() {
this.contours = [];
this.lastContour = [];
}
beginShape() {}
endShape() {
if (this.lastContour.length > 2) {
let c = this.lastContour;
c = this.alignHVKnots(c);
c = this.dropDuplicateFirstLast(c);
c = this.cleanupOccurrentKnots1(c);
c = this.cleanupOccurrentKnots2(c);
c = this.cleanupOccurrentKnots1(c);
c = this.removeColinearArc(c);
c = this.removeColinearCorners(c);
c = this.cleanupOccurrentKnots1(c);
if (c.length > 2) this.contours.push(c);
}
this.lastContour = [];
}
moveTo(x, y) {
this.endShape();
this.lineTo(x, y);
}
lineTo(x, y) {
this.lastContour.push(Point.fromXY(Point.Type.Corner, x, y));
}
arcTo(arc, x, y) {
const offPoints = TypoGeom.Quadify.auto(arc, 1, 8);
for (const z of offPoints) {
this.lastContour.push(Point.from(Point.Type.Quadratic, z));
}
this.lineTo(x, y);
}
// Contour cleaning code
alignHVKnots(c0) {
const c = c0.slice(0);
const alignX = new CoordinateAligner(c, GetX, SetX);
const alignY = new CoordinateAligner(c, GetY, SetY);
for (let i = 0; i < c.length; i++) {
const iNext = (i + 1) % c.length,
zCurr = c[i],
zNext = c[iNext];
if (zCurr.type === Point.Type.Quadratic && zNext.type === Point.Type.Corner) {
alignX.tryAlign(i, iNext);
alignY.tryAlign(i, iNext);
} else {
alignX.tryAlign(iNext, i);
alignY.tryAlign(iNext, i);
}
}
alignX.apply();
alignY.apply();
return c;
}
// Drop the duplicate point (first-last)
dropDuplicateFirstLast(c) {
while (c.length > 1) {
const first = c[0],
last = c[c.length - 1];
if (
first.type === Point.Type.Corner &&
last.type === Point.Type.Corner &&
isOccurrent(first, last)
) {
c.pop();
} else {
break;
}
}
return c;
}
// Occurrent cleanup -- corner-corner
cleanupOccurrentKnots1(c0) {
let drops = [];
for (let i = 0; i < c0.length; i++) drops[i] = false;
for (let i = 0; i < c0.length; i++) {
const iPost = (i + 1) % c0.length;
const pre = c0[i],
post = c0[iPost];
if (
iPost > 0 &&
pre.type === Point.Type.Corner &&
post.type === Point.Type.Corner &&
isOccurrent(pre, post)
) {
drops[iPost] = true;
}
}
return dropBy(c0, drops);
}
// Occurrent cleanup -- off points
// This function actually **INSERTS** points for occurrent off knots.
cleanupOccurrentKnots2(c0) {
let insertAfter = [];
for (let i = 0; i < c0.length; i++) insertAfter[i] = false;
for (let i = 0; i < c0.length; i++) {
const cur = c0[i];
if (cur.type !== Point.Type.Quadratic) continue;
const iPre = (i - 1 + c0.length) % c0.length;
const iPost = (i + 1) % c0.length;
const pre = c0[iPre];
const post = c0[iPost];
if (isOccurrent(pre, cur) && post.type === Point.Type.Quadratic) {
insertAfter[i] = true;
}
if (isOccurrent(cur, post) && pre.type === Point.Type.Quadratic) {
insertAfter[iPre] = true;
}
}
let c1 = [];
for (let i = 0; i < c0.length; i++) {
const cur = c0[i];
c1.push(cur);
if (insertAfter[i]) {
const iPost = (i + 1) % c0.length;
const post = c0[iPost];
c1.push(Point.mix(Point.Type.Corner, cur, post, 0.5));
}
}
return c1;
}
removeColinearCorners(c0) {
const c = c0.slice(0);
let found = false;
do {
found = false;
for (let i = 0; i < c.length; i++) {
const zPrev = c[(i - 1 + c.length) % c.length],
zCurr = c[i],
zNext = c[(i + 1) % c.length];
if (
zPrev.type === Point.Type.Corner &&
zNext.type === Point.Type.Corner &&
(pointsHVColinear(zPrev, zCurr, zNext) || pointsColinear(zPrev, zCurr, zNext))
) {
found = true;
c.splice(i, 1);
break;
}
}
} while (found);
return c;
}
removeColinearArc(c) {
if (c[0].type !== Point.Type.Corner) throw new Error("Unreachable");
let front = 0,
shouldRemove = [],
middlePoints = [];
for (let rear = 1; rear <= c.length; rear++) {
let zFront = c[front],
zRear = c[rear % c.length];
if (zRear.type === Point.Type.Corner) {
let allColinear = true;
for (const z of middlePoints) {
if (!pointsHVColinear(zFront, z, zRear)) allColinear = false;
}
if (allColinear) for (let i = front + 1; i < rear; i++) shouldRemove[i] = true;
front = rear;
middlePoints.length = 0;
} else {
middlePoints.push(zRear);
}
}
return dropBy(c, shouldRemove);
}
}
// Disjoint set for coordinate alignment
class CoordinateAligner {
constructor(c, lens, lensSet) {
this.c = c;
this.lens = lens;
this.lensSet = lensSet;
this.rank = [];
this.up = [];
for (let i = 0; i < c.length; i++) {
const x = lens(c[i]);
this.up[i] = i;
this.rank[i] = Math.abs(x - Math.round(x));
}
}
find(i) {
if (this.up[i] !== i) {
this.up[i] = this.find(this.up[i]);
return this.up[i];
} else {
return i;
}
}
tryAlign(i, j) {
if (occurrentPrecisionEqual(this.lens(this.c[i]), this.lens(this.c[j]))) {
this.align(i, j);
}
}
align(i, j) {
i = this.find(i);
j = this.find(j);
if (this.rank[i] > this.rank[j]) [i, j] = [j, i];
this.up[j] = i;
}
apply() {
for (let i = 0; i < this.c.length; i++) {
this.lensSet(this.c[i], Math.round(this.lens(this.c[this.find(i)])));
}
}
}
// Lenses used by aligner
const GetX = z => z.x;
const SetX = (z, x) => (z.x = x);
const GetY = z => z.y;
const SetY = (z, y) => (z.y = y);
function isOccurrent(zFirst, zLast) {
return zFirst.x === zLast.x && zFirst.y === zLast.y;
}
function occurrentPrecisionEqual(a, b) {
return Math.abs(a - b) < CurveUtil.OCCURRENT_PRECISION;
}
function aligned(a, b, c) {
return a === b && b === c;
}
function pointsHVColinear(zPrev, zCurr, zNext) {
// No need to check in-between-ness, we can safely remove the corner
if (aligned(zPrev.x, zCurr.x, zNext.x)) return true;
if (aligned(zPrev.y, zCurr.y, zNext.y)) return true;
return false;
}
function inBetween(a, b, c) {
return (a <= b && b <= c) || (c <= b && b <= a);
}
function pointsColinear(zPrev, zCurr, zNext) {
// If zCurr is not in between zPrev and zNext, they are not colinear
if (!inBetween(zPrev.x, zCurr.x, zNext.x)) return false;
if (!inBetween(zPrev.y, zCurr.y, zNext.y)) return false;
// Measure the distance of zCurr to the line zPrev--zNext
// If it is less than OCCURRENT_PRECISION, then we think it is colinear
// Use squared distance to avoid sqrt
const dx = zNext.x - zPrev.x,
dy = zNext.y - zPrev.y;
const t = (zCurr.y - zPrev.y) * dx - (zCurr.x - zPrev.x) * dy;
return (
t * t < CurveUtil.GEOMETRY_PRECISION * CurveUtil.GEOMETRY_PRECISION * (dx * dx + dy * dy)
);
}
// Dropping helper
function dropBy(c, shouldRemove) {
let n = 0;
for (let i = 0; i < c.length; i++) {
if (!shouldRemove[i]) c[n++] = c[i];
}
c.length = n;
return c;
}